Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên CD lấy điểm N, kẻ MN vuông góc với CD
=> 2 tam giac vuông MBC=MNC
=> 2tam giác MAD=MND
=> MB=MN=MA = R
vậy CD là tiếp tuyến đường tròn tâm M
- Áp dụng tính chất tỉ số lượng giác vào tam giác OCI vuông tại O .
\(Tan\widehat{OCI}=\dfrac{OI}{CO}=\dfrac{\dfrac{R}{2}}{R}=\dfrac{1}{2}\)
\(\Rightarrow\widehat{OCI}=26^o33^,\)
\(\Rightarrow\widehat{MOD}=2\widehat{MCD}=53^o7^,\)
Vậy ...
a: ΔOAC cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)AC
Xét tứ giác OHCK có \(\widehat{OHC}+\widehat{OKC}=90^0+90^0=180^0\)
nên OHCK là tứ giác nội tiếp
=>O,H,C,K cùng thuộc 1 đường tròn
b: ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
Xét tứ giác OCBD có
H là trung điểm chung của OB và CD
=>OCBD là hình bình hành
Hình bình hành OCBD có OC=OD
nên OCBD là hình thoi
=>OC=CB=BD=DO
Xét ΔCBO có CB=CO=OB
nên ΔCBO đều
=>\(\widehat{CBA}=60^0\)
Xét ΔCAB có \(tanCBA=\dfrac{CA}{CB}\)
=>\(\dfrac{CA}{CB}=tan60=\sqrt{3}\)
=>\(CA=\sqrt{3}\cdot CB\)
Xét ΔCAB vuông tại C có CH là đường cao
nên \(\left\{{}\begin{matrix}CA^2=AH\cdot AB\\CB^2=BH\cdot BA\end{matrix}\right.\)
=>\(\dfrac{CA^2}{CB^2}=\dfrac{AH\cdot AB}{BH\cdot AB}\)
=>\(\dfrac{AH}{BH}=\left(\sqrt{3}\right)^2=3\)
=>AH=3HB
I đối xứng A qua H nên H là trung điểm của AI
Xét tứ giác ACID có
H là trung điểm chung của AI và CD
nên ACID là hình bình hành
Hình bình hành ACID có AI\(\perp\)CD
nên ACID là hình thoi