K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
Cho đường tròn (o) có đường kính AB=15 . Dây CD vuông góc với AB, CD=12, tính diện tích tứ giác ABCD
1
MT
7 tháng 1 2016
Đúng òi
Gọi I là gd của AB và CD
=>SABC=1/2.CI.AB
=>SABD=1/2.DI.AB
=>SACBD=1/2 CI.AB+1/2.DI.AB=1/2DI.AB+1/2.DI.AB=DI.AB=6.15=45 ko bik đúng ko
TX
1
6 tháng 7 2016
A B C D E O
Gọi DE là đường kính của (O;R)
Dễ thấy \(\hept{\begin{cases}AC\perp BD\\BE\perp BD\end{cases}}\)\(\Rightarrow BE\text{//}AC\Rightarrow BECA\)là hình thang mà BECA nội tiếp (O;R) nên BECA là hình thang cân.
Do đó ta có : AB = CE \(\Rightarrow AB^2+CD^2=CE^2+CD^2=DE^2=\left(2R\right)^2=4R^2\) không đổi.
Vậy ta có điều phải chứng minh.
Diện tích tứ giác có hai đường chéo vuông góc với nhau bằng nữa tích hai đường chéo
=> Sabcd=(15*12)/2=90