Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOAB cân tại O
mà OE là đường cao
nên OE\(\perp\)AB
Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)
nên OECN là tứ giác nội tiếp
=>O,E,C,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{CNA}=\widehat{ABN}\)
Xét ΔCNA và ΔCBN có
\(\widehat{CNA}=\widehat{CBN}\)
\(\widehat{NCA}\) chung
Do đó: ΔCNA~ΔCBN
=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)
=>\(CN^2=CA\cdot CB\)
c: Xét ΔOCN vuông tại N có NH là đường cao
nên \(CH\cdot CO=CN^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)
a: góc CMO+góc CNO=180 độ
=>CMON nội tiếp
b: Xét ΔCMA và ΔCBM có
góc CMA=góc CBM
góc MCA chung
=>ΔCMA đồng dạng với ΔCBM
=>CM^2=CA*CB