Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AID=1/2(sđ cung AD+sđ cung CB)
=1/2(sđ cung MD+sđ cung MC)
=1/2*sđ cung CD
=góc DAI
=>ΔAID cân tại D
b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)
=>PDAI nội tiếp
M A B C D O P Q I N E F
a) Sđ(CM = Sđ(BC => ^BDC = ^MAC hay ^IDP = ^PAI => ADPI nội tiếp
b) Theo câu a: ^API = ^ADI = ^AMB => IP || MQ, tương tự IQ || MP. Suy ra MPIQ là hình bình hành => PI =MQ
c) Dễ thấy I là tâm nội tiếp tam giác ABC => N là điểm chính giữa cung nhỏ AB => N cố định
Đường tròn (O) có MN là dây cung => Trung điểm của MN nằm trên đường tròn đường kính ON cố định
Giới hạn quỹ tích: NA,NB cắt (ON) tại E và F khác N, vậy thì trung điểm MN chạy trên cung lớn EF của (ON).
Mình không vẽ hình được mong bạn thông cảm
a, Vì tứ giác MANB nội tiếp
=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)
Vậy IN.IM=IA^2
b,
VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'
=>PAB=AMP
MÀ AMP=ABN (tứ giác AMBN nội tiếp)
=>PAB=ABN
MÀ I là trung điểm của AB
=> I là trung điểm của NP
=> tứ giác ANBP là hình bình hành
Vậy tứ giác ANBP là hình bình hành
c,Vì tứ giác ANBP là hình bình hành
nên \(AN//BP\)
=>NAB=ABP
Lại có NAB=NMB( tứ giác AMBN nội tiếp)
=>ABP=NMB
=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))
=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và KGH=APB
MÀ I,A,B cố định
=> H,K cố định
Ta có APB=KGH
Mà APB =ANB( tứ giác ANBP là hbh)
=> KGH=ANB
MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =
=> ANB không đổi => KGH không đổi
MÀ K,H cố định
=> G thuộc cung tròn cố định
Vậy khi M di chuyển thì G thuộc cung tròn cố định
A B C O D E S F N M I
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
Mình không vẽ được hình mong bạn thông cảm
a, Chắc bạn làm rồi
b, Sử dụng tính chất 2 tiếp tuyến cắt nhau
=>\(\hept{\begin{cases}AP=IP\\IQ=BQ\\MA=MB\end{cases}}\)
Khi đó \(P_{MPQ}=MP+AP+MQ+QB=MA+MB=2a\)(đpcm)
c, Vì H là trực tâm của tam giác MAB
=>\(AH\perp MB\)
MÀ \(MB\perp OB\)
=> \(AH//OB\)
CMTT=>\(BH//AO\)
=> tứ giác AHBO là hình bình hành
=>AH=OB=R
MÀ A cố định
=> \(H\in\left(A,R\right)\)cố định
Vậy H thuộc đường tròn tâm A bán kính R cố định