K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2019

Đường tròn tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{6}\)

Ta luôn có \(IP=IQ=R\Rightarrow\Delta IPQ\) vuông cân tại I \(\Rightarrow PQ=R\sqrt{2}=2\sqrt{3}\)

Gọi H là trung điểm PQ \(\Rightarrow IH\perp PQ\) \(\Rightarrow IH=\frac{1}{2}PQ=\sqrt{3}\)

\(IH=d\left(I;d\right)\Rightarrow d\left(I;d\right)=\sqrt{3}\)

Gọi phương trình đường thẳng có dạng:

\(a\left(x-3\right)+b\left(y+1\right)=0\Leftrightarrow ax+by-3a+b=0\)

\(d\left(I;d\right)=\frac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{3}\Leftrightarrow\left|2a+b\right|=\sqrt{3a^2+3b^2}\)

\(\Leftrightarrow4a^2+4ab+b^2=3a^2+3b^2\)

\(\Leftrightarrow a^2+4ab-2b^2=0\)

Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=2+\sqrt{6}\\b=2-\sqrt{6}\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x+\left(2+\sqrt{6}\right)y-4+\sqrt{6}=0\\2x+\left(2-\sqrt{y}\right)y-4-\sqrt{6}=0\end{matrix}\right.\)

13 tháng 5 2019

Chọn a bằng bao nhiêu cũng được hết hả bạn ?

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

NV
14 tháng 6 2020

Đường tròn (C) tâm \(I\left(2;-2\right)\) bán kính \(R=3\)

\(\overrightarrow{MI}=\left(1;1\right)\Rightarrow IM=\sqrt{2}< R\Rightarrow\) M nằm phía trong đường tròn

Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB

\(AB=2AH=2\sqrt{R^2-IH^2}=2\sqrt{9-IH^2}\)

\(\Rightarrow AB_{min}\) khi \(IH_{max}\)

Trong tam giác vuông IMH, ta luôn có: \(IH\le IM\Rightarrow IH_{max}=IM\) khi H trùng M hay d vuông góc IM

\(\Rightarrow\) Phương trình d (vuông góc IM và đi qua M)

\(1\left(x-1\right)+1\left(y+3\right)=0\Leftrightarrow x+y+2=0\)

NV
14 tháng 6 2020

Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)

\(\overrightarrow{IM}=\left(3;-5\right)\Rightarrow IM=\sqrt{34}>R\)

\(\Rightarrow\) M nằm ngoài đường tròn

\(\Rightarrow\) Không tồn tại đường thẳng thỏa mãn yêu cầu (bạn xem lại đề, chỉ tìm được đường thẳng d khi điểm M nằm phía trong đường tròn)

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

26 tháng 3 2022

gọi H là trung điểm AB

=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)

\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)

\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)

\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)

\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17