Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
\(\left(d_1\right):y=\left(2m+5\right)x-3m+2\)
\(\left(d_2\right):y=-2x+m+16\)
Lập phương trình hoành độ giao điểm:
\(\left(2m+5\right)x-3m+2=-2x+m+16\)
\(\Leftrightarrow\left(2m+5\right)x-3m+2+2x-m-16=0\)
\(\Leftrightarrow\left(2m+5+2\right)x-4m-14=0\)
\(\Leftrightarrow\left(2m+7\right)x=4m+14\)
\(\Leftrightarrow x=\dfrac{4m+14}{2m+7}=\dfrac{2\left(2m+7\right)}{2m+7}=2\)
\(\Rightarrow y=\left(2m+5\right).2-3m+2\)
Cắt 1 điểm trên trục hoành khi:
\(\left(2m+5\right).2-3m+2=0\)
\(\Leftrightarrow4m+10-3m+2=0\)
\(\Leftrightarrow m+12=0\)
\(\Leftrightarrow m=-12\)
Vậy: m = -12 thì (d1) cắt (d2) tại một điểm trên trục hoành
Lời giải:
Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$
Vậy giao điểm của 2 ĐT trên là $(-1,0)$
Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$
$\Leftrightarrow m=-1$
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)