K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d

\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)

Thế vào (1):

\(x'-3+3\left(y'+2\right)+1=0\)

\(\Leftrightarrow x'+3y'+4=0\)

Vậy pt ảnh có dạng \(x+3y+4=0\)

15 tháng 10 2022

Tọa độ A' là:

\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)

Lấy B(0;-2) thuộc (d)

=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)

Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:

c+12-12=0

=>c=0

(C): (x-3)^2+(y-1)^2=9

=>R=3 và I(3;1)

=>I'(5;-5)

=>(C'): (x-5)^2+(y+5)^2=9

NV
18 tháng 8 2020

Lấy \(A\left(0;-1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\left(1;m-1\right)\)

\(A'\in d'\Rightarrow1+m-1-2=0\Rightarrow m=2\)

NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

25 tháng 4 2017

Đáp án A

Chọn D

21 tháng 2 2022

thanks nha

13 tháng 12 2021

Chọn C

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$

\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)

Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:

$3(x'-2)-2(y'+1)+1=0$

$\Leftrightarrow 3x'-2y'-7=0$

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.

Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$

Khi đó, $M'=T_{\overrightarrow{v}}(M)

\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)

PTĐTr $(C')$ có dạng:

$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$

$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$