K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

* Phân tích

Giả sử điểm M thuộc xy đã tìm được để có MA+ MB là ngắn nhất.

Lấy A’ đối xứng với A qua xy

ta có: MA = MA’

suy ra MA’ + MB cũng ngắn nhất .

Mà A và B lại nằm trên hai nửa mặt phẳng đối nhau có bờ là đường thẳng xy

Nên M phải nằm giữa A’và B tức là MA’ + MB = A’B

Suy ra M phải là giao của A’B và xy.

* Cách dựng

Dựng A’ đối xứng với A qua xy,

Nối A’với B cắt xy tại điểm M

*Chứng minh :

Nối M với A ta có MA = MA’ (A và A’ đối xứng với nhau qua xy)

Mà MA’ + MB = A’B

suy ra MA+MB =A’B là ngắn nhất

Thật vậy: nếu lấy một điểm M’ thuộc xy mà M’ khác M ,

nối M’ với A’ và M’ với B

ta có tam giác M’A’B.

Do đó M’A’ + M’B > A’B

mà M’A’ = M’A’(tính chất đối xứng).

2 tháng 12 2016

Do E là điểm bất kì trên AB, mà E đx vs F qua O => F nằm trên DC =>D,F,C thẳng hàng

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối...
Đọc tiếp

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB

2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối xứng với A qua d, Giả sử góc ACH = góc BCK

  a, Chứng minh rằng kí đó A' , C , B thẳng hàng

  b, Nêu cách dựng điểm C sao cho AC + BC bé nhất

3, Cho tam giác ABC. Dựng hình đối xứng với tam giác đã cho qua trung điểm D của cạnh BC

  a, Tứ giác tạo thành là hình gì

  b, Tính chu vi tứ giác đó biết AB = 10cm, AC = 7cm

4, Cho hình bình hành với E, F lần lượt là trung điểm của AD, BC; G thuộc đoạn AB. Gọi H và I lần lượt là điểm đối xứng của G qua E và F

  a, Chứng minh H, D, C, I thẳng hàng

  b, Chưng minh HI = 2CD

0