K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

GIẢI HỆ CỦA d1,d2 tìm tọa độ giao điểm giả sử gọi là A

\(\hept{\begin{cases}x-2y=-6\\2x+y=8\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=-12\\2x+y=8\end{cases}}\Rightarrow5y=20\Rightarrow y=4\Rightarrow x=2y-6=2.4-6=2\)

toạn độ A(2,4) Thay vào phương trinh d có

\(VT=\left(m+2\right)2-\left(2m-1\right)4+6m-8\)

\(=2m+4-8m+4+6m-8\)

\(=8m-8m+8-8=0=VP\forall m\)

vậy đường thẳng d luôn đi qua giao điểm A với mọi m

1 tháng 8 2018

Câu 1:

Câu 2:

Không có vÄn bản thay thế tá»± Äá»ng nà o.

Do d cắt \(Ox\) tại \(A\Rightarrow A\left(2;0\right)\)

Do d cắt \(Oy\) tại \(B\Rightarrow B\left(0;2\right)\)

\(\Rightarrow OA=\sqrt{\left(0-2\right)^2+\left(0-0\right)^2}=2\\ OB=\sqrt{\left(0-0\right)^2+\left(0-2\right)^2}=2\\ \Rightarrow S_{AOB}=\dfrac{OA\cdot OB}{2}=\dfrac{2\cdot2}{2}=2\)

1 tháng 8 2018

a) Giao điểm \(d_1;d_2\) có tọa độ \(x_o;y_0\)

\(Ta\text{ }có:2x_0+4=-2x_0+4\\ \Leftrightarrow4x_0=0\\ \Leftrightarrow x_0=0\\ \Leftrightarrow y_0=2\cdot0+4=4\)

Tọa độ của giao điểm \(d_1;d_2\)\(0;4\)

b)

Không có vÄn bản thay thế tá»± Äá»ng nà o.

22 tháng 11 2022

Vì (d)//(d3) nên a=1/2

=>y=1/2x+b

Tọa độ giao của (d1) và (d2) là:

x-7=-2x-1 và y=x-7

=>3x=6 và y=x-7

=>x=2 và y=-5

Thay x=2 và y=-5 vào(d), ta được:

b+1=-5

=>b=-6

22 tháng 11 2015

a) Giả sử d1 trùng d2 => có m để

=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)

=> d1 khong trùng với  d2

b)

+d1//d2 => m=3

+d1 cắt d2 => m\(\ne\)3

+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2

16 tháng 4 2020

Điều kiện cần và đủ để đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) đi qua điểm cố định \(N\left(x_0;y_0\right)\)với mọi m là:

\(\left(m-2\right)x_0+\left(m-1\right)y_0=1\forall m\)

\(\Leftrightarrow mx_0-2x_0+my_0-y_0-1=0\forall m\)

\(\Leftrightarrow\left(x_0+y_0\right)m-\left(2x_0+y_0+1\right)=0\forall m\)

\(\Leftrightarrow\hept{\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\)

Vậy các đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) luôn đi qua điểm cố định N(-1; 1)

16 tháng 4 2020

n=45+9=

2 tháng 3 2020

a, - Để 2 đường thẳng trên vuông góc với nhau thì :

\(\frac{1}{m}.\left(-m\right)=-1\)

=> \(-1=-1\) ( luôn đúng với mọi m, \(m\ne0\) )

Vậy (d1 ) và (d2 ) luôn vuông góc với nhau với mọi giá trị m ≠ 0 .

b, - Gỉa sử đường thẳng (d1 ) luôn đi qua điểm \(A\left(x_0,y_0\right)\) với mọi \(m\ne0\)

=> \(y_0=-mx_0+m+1\)

=> \(y_0-1=m\left(1-x_0\right)\)

=> \(\left\{{}\begin{matrix}y_0-1=0\\1-x_0=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x_0=1\\y_0=1\end{matrix}\right.\)

Vậy điểm cố định (d1) luôn đi qua là điểm ( 1, 1 ) .

2 tháng 3 2020

Nguyễn Ngọc Lộc ?Amanda?Nguyễn Lê Phước ThịnhPhạm Lan HươngTrần Quốc KhanhAkai HarumaHoàng Thị Ánh Phương Trên con đường thành công không có dấu chân của kẻ lười biếngTrung NguyenHy MinhKhánh LinhVũ Minh Tuấn@Mysterious Person giúp e với e cảm ơn trc

7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).