Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)
\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)
\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)
b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)
\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định
a) Thay x=-3 và y=1 vào (d), ta được:
\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)
\(\Leftrightarrow-6m+3-4m+5=1\)
\(\Leftrightarrow-10m=-7\)
hay \(m=\dfrac{7}{10}\)
a.
Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d
\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)
\(\Rightarrow m=\dfrac{7}{10}\)
b.
Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(2m-1\right)x_0-4m+5\)
\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)
Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
Gọi điểm cố định mà (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow\left(m+2\right)x_0+\left(m-3\right)y_0-m+8=0\\ \Leftrightarrow mx_0+2x_0+my_0-3y_0-m+8=0\\ \Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=1\\2x_0-3y_0=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(-1;2\right)\)
Vậy (d) luôn đi qua \(A\left(-1;2\right)\left(đpcm\right)\)