K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

a, Xét tam giác DOB và tam giác IOA ta có : 

^DOB = ^IOA ( đối đỉnh ) 

^AIO = ^ODB ( DB // CA do cùng vuông AB và 2 góc này ở vị trí so le trong ) 

^OAI = ^OBD = 900 

Vậy tam giác DOB = tam giác IOA ( ch - gn ) 

=> OD = OI ( 2 góc tương ứng ) 

b, Xét tam giác ICD có CO vuông ID hay CO là đường cao 

Lại có IO = OD ( cmt ) => CO là đường trung tuyến 

=> tam giác ICD cân tại C => CI = CD (2) 

Mặt khác : tam giác DOB = tam giác IOA ( cmt ) => BD = IA (1) 

=> CI = AC + IA lại có (1) ; (2) => CD = AC + BD 

c, Dựng OH vuông CD 

Xét tam giác DHO và tam giác HBO ta có : 

^DHO = ^HBO = 900 

^HDO = ^ODB ( cùng ''='' ^CID ) 

OD _ chung 

Vậy tam giác DHO = tam giác HBO ( g.c.g ) 

=> OH = OB = R 

Vậy CD là tiếp tuyến đường tròn (O)  

28 tháng 11 2022

a: Kẻ CO cắt BD tại E

Xét ΔOAC vuông tại A và ΔOBE vuông tại B có

OA=OB

góc COA=góc EOB

Do đó: ΔOAC=ΔOBE

=>OC=OE

Xét ΔDCE có

DO vừa là đường cao, vừalà trung tuyến

nên ΔDEC cân tại D

=>góc DCE=góc DEC=góc CAO

=>CO là phân giác của góc DCA

Kẻ CH vuông góc với CD

Xét ΔCAO vuông tại A và ΔCHO vuông tại H có

CO chung

góc ACO=góc HCO

DO đó: ΔCAO=ΔCHO

=>OA=OH=OB và CH=CA

Xét ΔOHD vuông tại H và ΔOBD vuông tại B có

OD chung

OH=OB

Do đó: ΔOHD=ΔOBD

=>DH=DB

=>AC+BD=CD
b: Gọi M là trung điểm của CD

Xét hình thang ABDC có

O,M lần lượt là trung điểm của AB,CD

nên OM la đường trung bình

=>OM//AC//BD

=>OM vuông góc với AB

=>CD là tiếp tuyến của (O)

c: AC*BD=CH*HD=OH^2=R^2=AB^2/4

20 tháng 3 2020

a)Gọi I là trung điểm của CD

Xét hình thang ACDB (AC//BD) có:\(\hept{\begin{cases}CI=ID\\AO=BO\end{cases}}\)

=>OI là đường tung bình của hình thang ACDB

=>\(OI=\frac{AC+BD}{2}=\frac{CD}{2}=CI=DI\)

=>Tam giác COD vuông tại O 

=> đpcm

b)Kẻ OE vuông góc với CD,giao cuae CO và BD là F

Ta có tam giác ACO=Tam giác BFO( cạnh góc vuông-góc nhọn kề)

=>OC=OF

Xét tam giác CDF có:

CO=OF (cmt)

DO vuông góc với CF

=>tam giác CDF cân tại D 

=>DO là phân giác góc CDF

=>góc EDO=BDO

=>tam giác EOD=tam giác BOD(Cạnh huyền - góc nhọn)

=>OE=OB

=>EO là bán kính (O) mà OE vuông góc với BC(cách vẽ)

=>CD là tiếp tuyến đường tròn đường kính AB

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi

19 tháng 12 2020

a) Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối  OI.

Ta có:  ˆAOI+ˆBOI=180∘AOI^+BOI^=180∘ (hai góc kề bù)

              OM là tia phân giác cảu góc AOI (tính chất hai tiếp tuyến cắt nhau)

 

Quảng cáo

 

              ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra: OM ⊥ ON (tính chất hai góc kề bù)

Vậy ˆMON=90∘MON^=90∘

b) Ta có:  MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà:        MN = MI + IN

Suy ra:   MN = AM + BN

c) Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến) theo hệ thức lượng trong tam giác vuông, ta có:

OI2=MI.NIOI2=MI.NI

Mà:                  MI = MA, NI = NB (chứng minh trên)

Suy ra:             AM.BN=OI2=R2AM.BN=OI2=R2.

good luck!