Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: MK\(\perp\)AB
Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)
nên BIMK là tứ giác nội tiếp
=>B,I,M,K cùng thuộc một đường tròn
b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)
nên IMHC là tứ giác nội tiếp
=>\(\widehat{MHI}=\widehat{MCI}\)(1)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)
Xét (O) có
\(\widehat{MCB}\) là góc nội tiếp chắn cung MB
\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM
Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)
Ta có: IMHC là tứ giác nội tiếp
=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM
Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)
Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)
Xét ΔMIH và ΔMKI có
\(\widehat{MIH}=\widehat{MKI}\)
\(\widehat{MHI}=\widehat{MIK}\)
Do đó: ΔMIH~ΔMKI
=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)
=>\(MI^2=MH\cdot MK\)
O B C A K I H M P Q
1) Xét đường tròn (O) có 2 điểm B và C nằm trên đường tròn, 2 tiếp tuyến tại B và C cắt tại A
=> AB=AC => \(\Delta\)ABC cân tại A (đpcm).
2) Xét tứ giác BIMK: ^MKB=^MIB=900 . => ^MKB+^MIB=1800 => Tứ giác BIMK nội tiếp đường tròn
Tương tự ta được tứ giác CHMI nội tiếp đường tròn.
3) Ta thấy: Tứ giác BIMK nội tiếp đường tròn => ^KBI + ^KMI =1800
hay ^ABC + ^KMI = 1800 (1)
Tương tự: ^ACB + ^IMH = 1800 (2)
Từ (1) và (2) kết hợp với ^ABC=^ACB (Do \(\Delta\)ABC cân tại A) => ^KMI=^IMH
Tứ giác CHMI nội tiếp => ^MIH=^MCH
Dễ thấy ^MCH=^MBC => ^MIH=^MBC (=^MBI). Mà ^MBI=^MKI (Tứ giác BIMK nt đường tròn)
=> ^MIH=^MKI
Xét \(\Delta\)IMH và \(\Delta\)KMI: ^MIH=^MKI; ^IMH=^KMI (cmt) => \(\Delta\)IMH ~ \(\Delta\)KMI (g.g)
Suy ra \(\frac{MI}{MK}=\frac{MH}{MI}\Rightarrow MI^2=MH.MK\)(đpcm).
4) Ta có: ^KBM = ^MCB. Mà ^KBM=^KIM => ^KIM=^MCB
Tương tự: ^MIH=^MBC
Từ đó: ^KIM + ^MIH = ^MCB + ^MBC => ^PIQ = 1800 - ^BMC = 1800 - ^PMQ
=> ^PIQ + ^PMQ = 1800 => Tứ giác MPIQ nội tiếp đường tròn => ^MIQ=^MPQ hay ^MIH=^MPQ
Mà ^MIH = ^MKI = ^MBI (cmt) => ^MIH=^MBI.
Lại có 2 góc trên nằm ở vị trí đồng vị => PQ//BC. Mà MI vuông góc với BC
=> PQ vuông góc MI (đpcm).