Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Leftrightarrow2X^3Y^4Z^3\)
b,hệ số:\(2\)
biến:\(X^3Y^4Z^3\)
c,thay x=2,y=1,z=-1;ta có PT:
\(2.2^3.1^4.\left(-1\right)^3\)
\(\Leftrightarrow-16\)
a, \(-\dfrac{2}{3}x^3y^2z\left(9x^4y^2z^2\right)=-6x^7y^4z^3\)
hế số -6 ; biến x^7y^4z^3 ; bậc 14
b, Thay x = 1 ; y = -1 ; z = 2 ta đc
6 . 1 . 1 . 8 = 48
hi I am min I am five years old and today I will introduce to you
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
a ) \(A=\left(-\frac{3}{7}x^2y^2z\right).\left(-\frac{42}{9}xy^2z^2\right)\)
\(=\left[\left(-\frac{3}{7}\right).\left(-\frac{42}{9}\right)\right]\left(x^2y^2z.xy^2z^2\right)\)
\(=2x^3y^4z^3\)
b ) \(A=2x^3y^4z^3\)có hệ số là 2 ; bậc là 10
c ) Thay x = 2; y = 1; z = - 1 vào biểu thức A ta được :
\(A=2.2^3.1^4.\left(-1\right)^3=2.8.\left(-1\right)=-16\)
Vậy giá trị của biểu thức A là - 16 tại x = 2; y = 1; z = - 1
\(E=\left(1\frac{1}{2}xy^2\right).\left(1\frac{1}{3}x^2y^3\right).\left(1\frac{1}{4}x^3y^4\right).....\left(1\frac{1}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}xy^2\right).\left(\frac{4}{3}x^2y^3\right).\left(\frac{5}{4}x^3y^4\right).....\left(\frac{2015}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{2015}{2014}\right).\left(x.x^2.x^3......x^{2013}\right).\left(y^2y^3.y^4......y^{2014}\right)\)
\(E=\left(\frac{3.4.5......2015}{2.3.4......2014}\right).\left(x^{1+2+3+....+2013}\right).\left(y^{2+3+4+....+2014}\right)\)
\(E=\frac{2015}{2}.x^{2027091}.y^{2029104}\)
Đến đây tự kết luận nhé(hệ số;phần biến;đơn thức)
A) \(D=-\frac{4}{3}x^5y^8z^3\)
b) \(D=-\frac{4}{3}\left(-1\right)^5.\left(\frac{1}{2}\right)^8.1^3=\frac{1}{192}\)