K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

Ta có : \(Q=x^2-2xy+y^2=x^2-xy-xy+y^2=x\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\ge0\forall x;y\)

Vậy ta có đpcm 

\(A=x^3-y^3-21xy\)

\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2+3xy\right)\)

\(A=7.\left(x^2+2xy+y^2+2xy\right)\)

\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)

\(A=7.\left(7^2+2xy\right)\)

\(A=7^3+14xy\)

Ngáo rồi @@

\(\)

26 tháng 5 2019

\(A=x^3-y^3-21xy\)

\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)

\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)

\(\Rightarrow A=7\left(x-y\right)^2\)

\(\Rightarrow A=7.7^2\)

\(\Rightarrow A=7.49\)

\(\Rightarrow A=343\)

NV
26 tháng 2 2020

\(A+B+C=4+17-9=12>0\Rightarrow\) ít nhất 1 trong 3 đa thức phải có giá trị dương

2. Bài này cần điều kiện x;y là các số nguyên mới giải được

\(8x-16-5y+15=0\)

\(\Leftrightarrow8\left(x-2\right)=5\left(y-3\right)\)

Do 8 và 5 nguyên tố cùng nhau \(\Rightarrow x-2⋮5\Rightarrow x-2=5k\Rightarrow x=5k+2\)

\(\Rightarrow y=8k+3\)

Vậy nghiệm của pt là \(\left(x;y\right)=\left(5k+2;8k+3\right)\) với \(k\in Z\)

26 tháng 2 2020

Em cảm ơn ạ

23 tháng 4 2021

fdfdfdfry5tytgrgtrtrtr

28 tháng 4 2021

Chưa ai giải được bài này sao?