Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt thôi nhé
a) Các cạnh // => Hình bình hành
T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi
b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //
c) 1] OO' là đường trung trực của AB => đường trung bình
2] CB//OO'
Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng
Câu này khó đấy = )) Làm sai chỗ nào tự sửa
B M C E F O A O'
a) MA và MB là các tiếp tuyến của (O) ( gt )
Theo tính chất của hai tiếp tuyến cắt nhau , ta có :
MA = MB
MO là tia phân giác của góc AMB
Tam giác AMB cân tại M ( MA = MB ) mà có MO là đường phân giác nên đồng thời là đường cao
=> \(MO\perp AB\) hay góc MEA = 90o
Tương tự ta có MO' là tia phân giác của góc AMC và góc MFA = 90o
MO, MO' là tia phân giác của hai góc kề bù góc AMB và góc AMC nên góc EMF = 90o
=> Tứ giác AEMF là hình chữ nhật ( vì có ba góc vuông )
b) ME . MO = MA2 ( hệ thức lượng trong tam giác MAO vuông )
MF . MO' = MA2 ( hệ thức lượng trong tam giác MAO' vuông )
=> ME . MO = MF . MO'
c) Đường tròn có đường kính BC có tâm M, bán kính MA . OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M)
d)
Gọi I là trung điểm của OO'
- I là tâm của đường tròn có đường kính OO'
- IM là bán kính ( vì MI là trung tuyến ứng với cạnh huyền của MOO' )
- IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C
=> Do đó \(IM\perp BC\)
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I)
O O' A B C H I K
a) Kẻ O'K vuông góc với OB tại K.
Ta có: \(OO'=AO+AO'=R+r\). Dễ thấy tứ giác BKO'C là hình chữ nhật
\(\Rightarrow O'C=BK\Rightarrow BK=r\)\(\Rightarrow OK=OB-BK=R-r\)
Áp dụng ĐL Pytago cho \(\Delta\)OKO' vuông tại K: \(OO'^2-OK^2=O'K^2\)
\(\Leftrightarrow\left(R+r\right)^2-\left(R-r\right)^2=O'K^2\)
\(\Leftrightarrow O'K^2=\left(R+r-R+r\right)\left(R+r+R-r\right)=2r.2R=4Rr\)
\(\Leftrightarrow O'K=2\sqrt{Rr}.\)Mà O'K=BC => \(BC=2\sqrt{Rr}\)
b) Sửa đề: CMR: O'B; OC và AH đồng qui ...
Gọi giao điểm của OC và AH là I. Áp dụng hệ quả ĐL Thales:
\(\frac{AI}{O'C}=\frac{OA}{OO'}=\frac{R}{R+r}\)\(\Rightarrow\frac{AI}{r}=\frac{R}{R+r}\Leftrightarrow AI=\frac{Rr}{R+r}\)(1)
\(\frac{HI}{OB}=\frac{CH}{BC}=\frac{O'A}{OO'}\)(Do OB // AH // O'C) \(\Rightarrow\frac{HI}{R}=\frac{r}{R+r}\Leftrightarrow HI=\frac{Rr}{R+r}\)(2)
Từ (1) và (2) => AI=HI => I là trung điểm của AH => OC đi qua trung điểm của AH
Tương tự ta c/m được O'B đi qua trung điểm AH => ĐPCM.
Đáp án là B