K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Theo giả thiết ta có O là trung điểm AB \( \Rightarrow \) AO = OB

Xét tam giác AOM và tam giác BOM có :

OM là cạnh chung

AO = OB

\(\widehat {MOA} = \widehat {MOB} = {90^o}\)(do d là trung trực AB)

(c-g-c)

\( \Rightarrow MA = MB\) (cạnh tương ứng)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: d là đường trung trực của đoạn thẳng AB, điểm M thuộc d nên MO là đường trung trực của đoạn thẳng AB

\(\Rightarrow MO \bot AB \to \widehat {MOA} = \widehat {MOB} = 90^\circ \).

Xét tam giác MOA và tam giác MOB có:

     OM chung;

     \(\widehat {MOA} = \widehat {MOB} = 90^\circ \);

     OA = OB (O là trung điểm của đoạn thẳng AB).

Vậy \(\Delta MOA = \Delta MOB\) (c.g.c)

b) \(\Delta MOA = \Delta MOB\) nên MA = MB ( 2 cạnh tương ứng)

17 tháng 9 2023

a) Xét hai tam giác MOA và MOB có:

     OA = OB (O là trung điểm của AB);

     MO chung;

     MA = MB.

Vậy \(\Delta MOA = \Delta MOB\)(c.c.c).

b) \(\Delta MOA = \Delta MOB\)nên \(\widehat {MOA} = \widehat {MOB} = \dfrac{1}{2}\widehat {AOB} = 90^\circ \)hay \(MO \bot AB\).

Vậy MO có là đường trung trực của đoạn thẳng AB (MO đi qua trung điểm O của đoạn thẳng AB và vuông góc với đoạn thẳng AB).

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

a: MC+CB=MB

mà CB=CA

nên MC+CA=MB

mà MC+CA<MA

nên MA>MB

b: Gọi D là giao điểm của NA với d

C là giao điểm của CB với d

Ta có:NA=ND+DA

mà DA=DB

nen NA=ND+DB(3)

mà NB<ND+DB

nên NA>NB

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi

30 tháng 6 2016

bn tự vẽ hình nhẽ mình chỉ cm thôi

30 tháng 6 2016

bài 1: xét Δ EAM vàΔ BCM có:

EM = AM (gt)

BM=AM (gt)

góc EMA = CMB ( đđ) => Δ EAM=Δ BCM (cgc) =>AE =BC( 2 cạnh tương ứng)  (1)

CM tương tự ta đc Δ ANE = Δ CNB (cgc) => BC=FA ( 2 cạnh Tương Ứng)       (2)

 Từ 1 và 2 suy ra AE=FA hay A là trung điểm của EF

15 tháng 11 2016

d H A B C 1 2 D

Giải:
Vì d là đường trung trực của AB và cắt AB tại H

\(\Rightarrow AH=HB\) (*)

Xét \(\Delta HAC,\Delta HBC\) có:

AH = HB ( theo (*) )

\(\widehat{AHC}=\widehat{BHC}\left(=90^o\right)\)

CH: cạnh chung

\(\Rightarrow\Delta HAC=\Delta HBC\left(c-g-c\right)\)

\(\Rightarrow CA=CB\) ( hai cạnh tương ứng ) ( đpcm )

b) Vì \(\Delta HAC=\Delta HBC\)

\(\Rightarrow\widehat{C_1}=\widehat{C_2}\) ( góc tương ứng )

Xét \(\Delta CAD,\Delta CBD\) có:

\(CA=CB\)

\(\widehat{C_1}=\widehat{C_2}\)

CD: cạnh chung

\(\Rightarrow\Delta CAD=\Delta CBD\left(c-g-c\right)\)

15 tháng 11 2016

Xin lỗi nhé, câu hỏi câu a là thế này:

Chứng minh tam giác HAC bằng tam giác HBC. Từ đó suy ra CA = CB ( H là giao điểm của d với AB)

a: Gọi N là giao điểm của BC với a

Nếu M khác N 

Vì M nằm trên đường trung trực của AC

nên MA=MC

XétΔMBC có BC<MB+MC

=>BC<MA+MB

Nếu M trùng với N thì nối NA

Vì N nằm trên đường trung trực của AC nên NA=NC

=>MA+MB=NA+NB=BC

=>MA+MB>=BC

b: MA+MB nhỏ nhất khi M là giao điểm của BC với a