K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

M A C x B D y H K O I

a) Tam giác AMC vuông tại M có MH là đường cao 

\(\Rightarrow MH=\sqrt{AH.BH}\)( hệ thức lượng trong tam giác vuông )
\(\Rightarrow MH=\sqrt{15}\left(cm\right)\)

b) Vì AC song song với BD nên ta có : \(\frac{AC}{BD}=\frac{AI}{ID}=\frac{CM}{MD}\)( vì \(AC=CM;BD=MD\))

\(\Rightarrow MI//AC\)mà \(MH//AC\) ( cùng vuông góc với AB )
 

Suy ra \(M,I,H\)thẳng hàng

c ) Đặt \(AB=a,AM=c,BM=b\)

Ta có:

\(AK=\frac{a+c-b}{2};BK=\frac{a+b-c}{2}\)

\(\Rightarrow AK.BK=\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{1}{2}.\left[\frac{\left(a+c-b\right)\left(a+b-c\right)}{2}\right]\)

\(=\frac{1}{2}\left[\frac{a^2-\left(b-c\right)^2}{2}\right]=\frac{1}{2}\left[\frac{a^2-\left(b^2+c^2\right)+2bc}{2}\right]\)

\(=\frac{1}{2}.\frac{2bc}{2}=\frac{1}{2}.bc=\frac{1}{2}AM.MB=S_{AMB}\)

Vậy \(S_{AMB}=AK.KB\)

Chúc bạn học tốt !!!

A B M X Y C D Drawed by Hoi con bo

Chắc mk nghĩ thế này là ổn lắm rùi

Hội con 🐄 chúc bạn học tốt!!! 

2 tháng 9 2018

A B C D I H 30 0

a) Ta thấy điểm C nằm trên nửa đường tròn đường kính AB => ^ACB = 900

Hay ^ACI = 900 . Xét \(\Delta\)AIC có: ^ACI = 900 ; ^CAI (=^CAD) = 300

=> IA= 2.IC => \(\frac{IC}{IA}=\frac{1}{2}\)

Xét \(\Delta\)CID và \(\Delta\)AIB có: ^CID = ^AIB (Đối đỉnh); ^ICD = ^IAB (2 góc nội tiếp chắn cung BD)

=> \(\Delta\)CID ~ \(\Delta\)AIB (g.g) => \(\frac{CD}{AB}=\frac{IC}{IA}=\frac{1}{2}\).

Vậy \(\frac{CD}{AB}=\frac{1}{2}.\)

b) Xét tứ giác ACIH: ^ACI = 900; ^AHI = 900 => Tứ giác ACIH nội tiếp đường tròn

=> ^IAH = ^ICH hay ^BAD = ^ICH. Mà ^BAD = ^BCD (2 góc nội tiếp chắn cung BD)

=> ^ICH = ^BCD = ^ICD => CI là phân giác ^DCH.

Chứng minh tương tự; ta có: DI là phân giác ^CDH

Xét \(\Delta\)CDH có: CI là phân giác ^DCH; DI là phân giác ^CDH

=> I là giao điểm của 3 đường phân giác của \(\Delta\)CDH (đpcm).

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(