K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 1 2020
A B C H A' O C' B'
kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:
\(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)
\(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)
Nguồn: HiệU NguyễN
Kẻ OM vuông góc với BC, kẻ AI vuông góc với BC
\(\Rightarrow\)OM//AI
Xét tam giác AA'I có OM//AI(cmt)
\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)
\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)
Tương tự, ta có \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)
\(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)
nên \(\Rightarrow\)đ/cm