Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AOC và tam giác BOC có:
OC chung
\(\widehat{BOC}\)=\(\widehat{AOC}\)(GT)
\(\Rightarrow\)tam giác AOC = tam giác BOC( CH-GN)
b,gọi F là giao điểm của OC và AB
xét tam giác FOA và tam giác FOB có:
OA=OB( câu a)
\(\widehat{FOA}\)=\(\widehat{FOB}\)(GT)
OF cạnh chung
\(\Rightarrow\)tam giác FOA= tam giác FOB( c.g.c)
\(\Rightarrow\)\(\widehat{AFO}\) =\(\widehat{BFO}\)2 góc này ở vị trí kề bù nên \(\widehat{AFO}\)=\(\widehat{BFO}\)=90 độ\(\Rightarrow\)OC là đường trung trực của đg thẳng AB
Ta có hình vẽ:
x O y z H A B D C
a/ Xét hai tam giác vuông OAH và OBH có:
góc AOH = góc BOH (Gt)
OH: cạnh chung
=> tam giác OAH = tam giác OBH
=> OA = OB (hai cạnh tương ứng)
Vậy tam giác OAB cân tại O
b/ Ta có: OA = OB (cmt)
Ta lại có: AH = BH (t/g OAH = t/g BOH)
=> OH là trung trực của AB
=> OH vuông góc vs AB
hay OH là đường cao của tam giác OAB
Ta có: AD vuông góc với OB
hay AD là đường cao của tam giác OAB
Mà AD cắt OH tại C
=> C là trực tâm của tam giác
=> BC vuông góc vs OA
hay BC vuông góc vs Ox
Tự vẽ hình.
a) Xét \(\Delta OAH;\Delta OBH\) vuông tại A; B có:
OH chung
\(\widehat{AOH}=\widehat{BOH}\) (tia phân giác)
\(\Rightarrow\Delta OAH=\Delta OBH\left(ch-gn\right)\)
\(\Rightarrow AH=BH\)
\(\Rightarrow\Delta HAB\) cân tại H.
b) Gọi giao điểm của BC và OA là E.
Xét \(\Delta OAC;\Delta OBC:\)
\(OA=OB\) (suy ra từ câu a)
\(\widehat{AOC}=\widehat{BOC}\) (tia pg)
OC chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\) hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD;\Delta OBE\):
\(\widehat{O}\) chung
\(OA=OB\)
\(\widehat{OAD}=\widehat{OBE}\) (c/m trên)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
\(\Rightarrow\widehat{ODA}=\widehat{OEB}=90^o\)
\(\Rightarrow BC\perp Ox\)