K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

a. Xét tam giác AHO và tam giác BKO, có:

\(\widehat{BKO}=\widehat{AHO}=90^0\)

\(\widehat{O}:chung\)

Vậy tam giác AHO đồng dạng tam giác BKO ( g.g )

b.Xét tam giác EAK và tam giác EBH, có:

\(\widehat{AEK}=\widehat{BEH}\) ( đối đỉnh )

\(\widehat{AKE}=\widehat{BHE}=90^0\)

Vậy tam giác EAK đồng dạng tam giác EBH ( g.g )

\(\Rightarrow\dfrac{EK}{EH}=\dfrac{EA}{EB}\)

\(\Rightarrow EK.EB=EA.EH\)

c.Áp dụng định lý pitago vào tam giác vuông OAH, có:

\(OA^2=OH^2+AH^2\)

\(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

Ta có: tam giác AHO đồng dạng tam giác BKO

\(\Rightarrow\dfrac{OA}{OB}=\dfrac{AH}{BK}\)

\(\Leftrightarrow\dfrac{5}{4}=\dfrac{4}{BK}\)

\(\Leftrightarrow5BK=16\)

\(\Leftrightarrow BK=\dfrac{16}{5}cm\)

NV
3 tháng 3 2022

Đề bài sai ngay từ câu a, hai tam giác này đồng dạng chứ ko bằng nhau (chúng chỉ bằng nhau khi E nằm trên tia phân giác trong góc xOy)

3 tháng 3 2021

A B C D E F H K M I G

a) Ta có:

\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\)       ⇒ \(BH\text{//}KC\) 

\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\)       ⇒ \(CH\text{//}BK\)

\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)

⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC

⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)

Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)

⇒ \(IM\) là đường trung bình của \(\Delta AHK\)

⇒ \(IM=\dfrac{1}{2}AH\)              \(\left(ĐPCM\right)\)

c)

Ta có:

\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)  

\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)

\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)

⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)

⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)          \(\left(ĐPCM\right)\)

 

a: Xét ΔOAH và ΔOBH có

AO=BO

OH chung

AH=BH

=>ΔOHA=ΔOHB
b: ΔOHA=ΔOHB

=>góc OHA=góc OHB=180/2=90 độ

=>OH vuông góc AB

c: Xét ΔOAC và ΔOBC có

OA=OB

góc AOC=góc BOC

OC chung

=>ΔOAC=ΔOBC