K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 7 2023
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
=>AH*OA=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AE*AD=AH*AO
từ điểm A nằm ngoài đường tròn (O,R) vẽ tiếp tuyến AB,cát tuyến AMN với đường tròn( M nằm giữa A,N, B thuộc cung lớn MN) gọi C là điểm chính giữa cung nhỏ MN. đường thẳng MN lần lượt cắt OC và BC tại I và E.
a. Chứng minh tứ giác AIOB nội tiếp
b. Chứng minh tam giác ABE cân
c. Biết AB bằng 2R.Tính chu vi của đường tròn ngoại tiếp tứ giác AIOB theo R
đ. Kẻ tiếp tuyến thứ 2 AL của đường tròn O.Gọi K là giao điểm của BL và ÒA. Chứng minh AM.AN=AL bình, AK.AO=AM.AN
A B C D E O H
Sau đây là cách của mình
Xét dây ED và tâm O của ( O ) có H là trung điểm của DE nên \(OH\perp DE\)
Khi đó tứ giác AHOC là tứ giác nội tiếp, tương tự ABHD cũng là tứ giác nội tiếp
Khi đó 5 điểm A,B,H,O,C đồng viên
Khi đó \(\widehat{AHB}=\widehat{AOB};\widehat{AHB}=\widehat{AOB}\)
Mà theo tính chất 2 tiếp tuyến cắt nhau ta có được \(OA\) là phân giác của \(\widehat{BOC}\)
Hay \(\widehat{AOB}=\widehat{AOC}\Rightarrow\widehat{AHB}=\widehat{AHC}\Rightarrow HA\) là phân giác của ^BHC
Vậy ta có đpcm