Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
b: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=OA^2-AB^2
Mình giải câu 2
Góc AQB nội tiếp chắn cung AB
BAM góc tạo bởi dây cung chắn chung AB
Nên AQB = BAM
BAM=BKM góc nội tiếp chắn cung BM (do AKBM nội tiếp cái này phải chứng minh thêm MAOKM cùng thuộc đường tròn dễ)
suy ra AQB = BKM mà vị trí đồng vị nên suy ra các kiểu
a: Xét ΔABC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\)
hay BK=4,8cm
b: Xét ΔABC vuông tại B có BK là đường cao
nên \(AK\cdot AC=BA^2\)
\(\Leftrightarrow AK\cdot AC=\left(2\cdot AI\right)^2=4\cdot AI^2\)
a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC
Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B
\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)
Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)
Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)
Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.
b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O))
\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)
Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)
Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)