Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
a) Gọi K là giao điểm của EI và DM
Xét \(\Delta EKD\)và \(\Delta EKM\)có :
\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )
\(EI\): Cạnh chung
\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)
Do đó : Tam giác vuông EKM = Tam giác vuông EKM
\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )
b)
Xét \(\Delta EDI\)và \(\Delta EMI\)có :
\(ED=EM\)( câu a )
\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )
\(EI:\)Cạnh chung
Do đó : Tam giác EMI = tam giác EDI (c.g.c )
\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )
Mà \(\widehat{EDI}=90^o\)
\(\Rightarrow\widehat{EMI}=90^o\)
\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)
c)
Vì \(\widehat{EMI}=90^o\)( câu b )
\(\Rightarrow\widehat{IMF}=90^o\)
Xét tam giác IMF ta có :
\(\widehat{IMF}=90\)
=> IF là cạnh lớn nhất ( cạnh đối diện với góc vuông )
\(\Rightarrow IF>IM\)
Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )
\(\Rightarrow IF>ID\)
c ) Áp dụng t/c đường đồng quy .