K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016
x01
y=4x−3−31
x01
y=−x+221

Ta có phương trình hoàng độ giao điểm:

4x−3=−x+2

⇔5x=5

⇔x=1

⇒y=−x+2=−1+2=1

Vậy 2 đồ thị cắt nhau tại A(1;1)

29 tháng 7 2016
\(x\)\(0\)\(1\)
\(y=4x-3\)\(-3\)\(1\)
\(x\)\(0\)\(1\)
\(y=-x+2\)\(2\)\(1\)

1 2 3 1 2 3 -1 -2 -3 y=4x-3 y=-x+2 A

Ta có phương trình hoàng độ giao điểm:

\(4x-3=-x+2\)

\(\Leftrightarrow5x=5\)

\(\Leftrightarrow x=1\)

\(\Rightarrow y=-x+2=-1+2=1\)

Vậy 2 đồ thị cắt nhau tại \(A\left(1;1\right)\)

20 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-2=-x+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

20 tháng 12 2021

a)

Hỏi đáp Toánb, Gọi giao điểm của 2 đường thẳng trên là M(x1;y1)

tọa độ giao điểm của (d1) và (d2) là nghiệm của hpt

{y1=2x17y1=x11{y1=2x1−7y1=−x1−1<=>{x1=2y1=3{x1=2y1=−3

Vậy...

c, phương trình đường thẳng (d3) có dạng y=ax+b

Vì đt(d3) song song với (d2) và cắt đường thẳng (d1) tại một điểm nằm trên trục tung nên ta được a=-1, x=0,y=-7

=> b=-7

Thay a=-1, b=-7 vào cths y=ax+b ta được

y=-x-7

 

 

5 tháng 9 2021

mn ơi làm bài này giùm em vs 

17 tháng 11 2023

a/ bạn tự làm

b/ \(\Rightarrow y=0\Rightarrow\dfrac{1}{2}x+2=0\) giải PT tìm hoành độ x

c/ \(\Rightarrow x=0\Rightarrow y=0+2=2\)

d/ \(\Rightarrow\dfrac{1}{2}x+2=-x+2\) Giải PT tìm hoành độ x của C rồi thay vào d1 hoặc d2 để tìm tung độ y của C

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

11 tháng 12 2021

1: Để hai đường thẳng cắt nhau thì 

2m+1<>m+2

hay m<>1

a: loading...

b:

Bổ sung đề: A,B lần lượt là giao của (d1) với (d2) và (d3)

Tọa độ A là:

3x=1/3x và y=3x

=>x=0 và y=0

Tọa độ B là:

3x=-x+4 và y=3x

=>x=1 và y=3