Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(u_n=\frac{n^2+n-2}{n^2+3n}u_{n-1}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}u_{n-1}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}.\frac{\left(n-2\right)\left(n+1\right)}{\left(n-1\right)\left(n+2\right)}u_{n-2}\)
\(=....=\frac{1.4}{n\left(n+3\right)}u_2=\frac{1}{n\left(n+3\right)}\)
Mình viết quy trình bấm phím luôn nhé :
- Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)
Bấm CALC , Máy hỏi D? -> 2
B? -> 2
C? -> 1
Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.
Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400
- Quy trình bấm phím Sn :
\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)
Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0
Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.
Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707
Quy trình bấm phím Un : A chính là Un
Quy trình bấm phím Sn : X chính là Sn
Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...
\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)
Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)
\(\Rightarrow V_n=V_{n-1}\)
\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)
Có \(V_1=1.\left(1+2\right).U_1=1\)
\(\Rightarrow V_n=1\)
\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)
\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=...\)
ta có : \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2.\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}\)
\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n.\sqrt{n+1}}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Giải casio được không?/