K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TV
0
KN
17 tháng 2 2020
n số a1, a2, …, an mà mỗi số trong chúng bằng1 hoặc -1 nên \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)nhận giá trị 1 hoặc -1.
Mà ta có \(a_1.a_2+a_2.a_3+...+a_{n-1}.a_n+a_n.a_1=0\)nên trong các hạng tử \(a_1.a_2;a_2.a_3;...;a_{n-1}.a_n;a_n.a_1\)sẽ có 1 nửa nhận giá trị 1, nửa còn lại nhận giá trị -1.
Đặt \(n=2k\)
Mặt khác: \(\left(x_1.x_2\right)\left(x_2.x_3\right)...\left(x_n.x_1\right)=\left(x_1\right)^2.\left(x_2\right)^2...\left(x_n\right)^2=1\)
\(\Rightarrow1^k.\left(-1\right)^k=1\Rightarrow\left(-1\right)^k=1\)nên k chẵn
Vậy \(n⋮4\)(đpcm)
25 tháng 3 2020
Câu hỏi của •๖ۣۜLү ²ƙ⁸ ( ๖ۣۜTεαм ๖ۣۜNɦâη ๖ۣۜMã )⁀ᶦᵈᵒᶫ - Toán lớp 6 - Học toán với OnlineMath
NM
0
Quy nạp theo n cho \(a_n=3^n+1\)(@)
+) Với n = 0 ta có: \(a_0=3^0+1=2\) đúng
Với n = 1 ta có: \(a_1=3^1+1=4\) đúng
=> (@) đúng với n = 0 và n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(a_{n+1}=3a_n-2=3\left(3^n+1\right)-2=3^{n+1}+1\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi n.