Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/8,1/24,1/48,1/80
1/8=1/2x4
1/24=1/4x6
1/48=1/6x8
1/80=1/8x10
Tới đây chắc hiểu rồi chứ
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) 2 = 1*2; 6 = 2*3; 12 = 3*4; 20 = 4*5; 30 = 5*6; ...
Quy luật : n(n + 1) với n là số hạng trong dãy
Vì 42 = 6*7 nên 42 là số thứ 6 trong dãy.
Vậy 5 số hạng tiếp theo là:
7*8 = 56
8*9 = 72
9*10 = 90
10*11 = 110
b) Số hạng thứ 268 là: 268*269 = 72092
gợi ý sương sương =)):
1, quy luật: 2,6,12,30,42,..
6=2+4
12=6+6
30=12+8
...
2,Xét dãy số phụ:
tham khảo:https://youtu.be/yH7uesbznnw
Nanami :))) k cho tôi hén?
Ta có: \(\frac{1}{8}=\frac{1}{2\cdot4}\)
\(\frac{1}{24}=\frac{1}{4\cdot6}\)
\(\frac{1}{48}=\frac{1}{6.8}\)
\(\Rightarrow\)Số hạng thứ 30 là:\(\frac{1}{60\cdot62}=\frac{1}{3720}\)
a. quy luật:
st1: 1=1+4x0
st2:5=1+4x1
st3:9=1+4x2
st4:13=1+4x3
st5: 1+4x4=17
st6: 1+4x5=21
st7: 1+4x6=25
st8: 1+4x7=29
...
st20: 1+4x19=77
b. B={ 1;5;9;13;17;21;25;29}
c. số thứ 20 là: 77 (câu a)
Quy luật:
Mỗi số hạng cách nhau 3 số hạng
Số thứ nhất là 1
Số thứ 2 là 4
Số thứ 3 là 7
......
Số thứ 24 là 70
b) Đợi mik suy nghĩ nha
a) Quy luật :
Ta có : \(\frac{1}{8}\)= \(\frac{1}{2\cdot4}\)
\(\frac{1}{24}\)= \(\frac{1}{4\cdot6}\)
\(\frac{1}{48}\)= \(\frac{1}{6\cdot8}\)
\(\frac{1}{80}\)= \(\frac{1}{8\cdot10}\)
Do đó 2 số tiếp theo sẽ có mẫu lần lượt là 120 ( 10 . 12 ) và 168 ( 12 . 14 )
2 số tiếp theo là : \(\frac{1}{120}\)và \(\frac{1}{168}\)
b) Tổng 6 số hạng đầu của dãy số là :
\(\frac{1}{8}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{80}\)+ \(\frac{1}{120}\)+ \(\frac{1}{168}\)
= \(\frac{1}{2\cdot4}\)+ \(\frac{1}{4\cdot6}\)+ \(\frac{1}{6\cdot8}\)+ \(\frac{1}{8\cdot10}\)+ \(\frac{1}{10\cdot12}\)+ \(\frac{1}{12\cdot14}\)
= \(\frac{1}{2}\). ( \(\frac{2}{2\cdot4}\)+ \(\frac{2}{4\cdot6}\)+ \(\frac{2}{6\cdot8}\)+ \(\frac{2}{8\cdot10}\)+ \(\frac{2}{10\cdot12}\)+ \(\frac{2}{12\cdot14}\))
= 1/2 x ( 1 - 1/4 + 1/4 - 1/6 + 1/6- 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )
= 1/2 x ( 1 - 1/14 )
= 1/2 x 13/14
= 13/28