K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

100A = \(\frac{99}{1}+1+\frac{98}{2}+1+...+\frac{1}{99}+1-99\)

100A=\(\frac{100}{1}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}-99\)

100A =\(\left(\frac{100}{2}+\frac{100}{3}+..+\frac{100}{99}+100-99\right)\)

100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\right)\)

100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\right)\)

100A=100.\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

22 tháng 5 2016

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

=>A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Và đến đây là hết biik giải nữa

19 tháng 7 2016

ta thấy : \(T=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}\)  và T > 0 

mà  \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\) 

=> \(0< T< \frac{97}{300}\)  

Chứng tỏ tổng T không phải là một số tự nhiên ! ... 

19 tháng 7 2016

thanks 

8 tháng 2 2015

tính nhanh tổng a ta thấy tổng là phân số vậy thì quá rõ

8 tháng 4 2015

Đặt mẫu số chung là: 2^6.3^4.....97

Thừa số phụ của các thừa số tương ứng là k1, k2, k3,..., k99.

Khi đó A= k1+k2+...+k99/2^6.3^4.....97

Ta thấy mẫu số chung của A là tích của các thừa số nguyên tố trong đó có thừa số 2 với 2^6 lớn nhất. Đặt mẫu số chung là 2^6.P (P là tích các thừa số nguyên tố lẻ không vượt quá 100). Trong  tất cả các thừa số phụ của các p/s, chỉ có duy nhất thừa số phụ của p/s 1/64=1/2^6 là số lẻ còn tất cả các thừa số phụ còn lại đều là chẵn. Nên khi thực hiện phép tính thì mẫu số chắn còn tử số lẻ => A ko phải số tự nhiên

27 tháng 12 2017

1) Đặt A = 1 + 3 + 32 + .... + 398 + 399

=> 3A = 3 + 32 + .... + 398 + 3100 

=> 3A - A = 3100 - 1

=> 2A = 3100 - 1

=> \(A=\frac{3^{100}-1}{2}\)

Nên : 3100  - (1 + 3 + 32 + .... + 398 + 399)

= 3100 - \(\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2-3^{100}+1}{2}\)

\(\frac{3^{100}+1}{2}\)

23 tháng 3 2016

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

1 tháng 4 2017

Thùy Trang giỏi quá!!!