K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm

AH = tan\(\widehat{ACH}\)x HM = tan 15x 2 = \(4-2\sqrt{3}\)cm

Sin \(\widehat{AMH}\)\(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\)  = \(2-\sqrt{3}\)    cm

Định lí Pitago : AM= AH2 + HM2

HC = tan \(\widehat{ACH}\)x AH

12 tháng 7 2018

Tam Giác ABC có A = 90o

AM là trung tuyến

=> tam giác AMC cân tại M

=> AMH = 2.C = 30o

AM = 1/2 . BC = 2 (cm)

=> AH = Sin30 . AM = 1 (cm)

=> HM = Cos30 . AM = \(\sqrt{3}\) (cm)

=> HC = HM + MC = \(\sqrt{3}\) + 2 (cm)

b)

Tính được

AC = \(\sqrt{HC.BC}\)

\(\Rightarrow AC=\sqrt{\left(\sqrt{3}+2\right).4}=2\sqrt{2+\sqrt{3}}\)

\(\Rightarrow C\text{os}15^o=\dfrac{HC}{AC}=\dfrac{2+\sqrt{3}}{2\sqrt{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\)

\(\Rightarrow C\text{os}15^o=\dfrac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{4}=\dfrac{\sqrt{2}.\left(\sqrt{3}+1\right)}{4}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)(đpcm)

5 tháng 9 2021

sao AMH = 2C v ạ

 

16 tháng 9 2020

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

17 tháng 9 2020

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...