Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BHA và BHE có:
BD chung
ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)
ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)
⇒Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác củaˆBB^)
⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)
⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)
ED vuông góc với B tại E
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đpcm)
a) Vì EH ⊥ BC ( gt )
=> ΔBHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét ΔABI và ΔHBI có :
BA = BH (ΔBAE = ΔBHE (cmt)
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
BI chung
=> ΔABI = ΔHBI ( c.g.c )
=> ∠AIB = ∠AIH ( 2 góc tương ứng )
Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )
=> ∠AIB = ∠AIH = 900
=> BI ⊥ AH (1)
Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
=> I là trung điểm của AH ( 3)
Từ (1) (2) (3) => BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét ΔKAE và ΔCHE có:
∠KAE = ∠CHE ( = 900 )
AE = HE ( ΔBAE = ΔBHE (cmt)
∠AEK = ∠HEC ( 2 góc đối đỉnh )
=> ΔKAE = ΔCHE ( g.c.g )
=> EK = EC ( 2 cạnh tương ứng )
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
A B C D E K I 1 2 1 2
Giả thiết | \(\widehat{B_1}=\widehat{B_2};KI=IC;\widehat{A}=90^{\text{o}};AB=BE\) |
Kết luận | a) \(\Delta\)BDA = \(\Delta\)BDE ; \(DE\perp BC\) b) \(\Delta\)ADK = \(\Delta\)EDC ; KA = CE c) B ; D ; I thẳng hàng |
a) Xét : \(\Delta\)BDA và \(\Delta\)BDE có :
\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\AB=AE\\AD\text{ chung}\end{cases}\Rightarrow\Delta ABD=\Delta BDE\left(c.g.c\right)}\)
=> \(\hept{\begin{cases}AD=DE\left(\text{cạnh tương ứng}\right)\\\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\left(\text{góc tương ứng}\right)\end{cases}}\)
mà \(\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\Rightarrow DE\perp BC\)
b) Xét \(\Delta\)ADK và \(\Delta\)EDC có :
\(\hept{\begin{cases}\widehat{KAD}=\widehat{DEC\left(cmt\right)}\\AD=DE\left(cmt\right)\\\widehat{KDA}=\widehat{CDE}\left(\text{đối đỉnh}\right)\end{cases}}\)=> \(\Delta\)ADK = \(\Delta\)EDC => \(\hept{\begin{cases}AK=CE\left(\text{cạnh tương ứng}\right)\\\widehat{DKA}=\widehat{ECD}\left(\text{góc tương ứng}\right)\end{cases}}\)
c) Lại có : AB = BE (gt) ; AK = CE (câu c)
=>AB + AK = BE + CE
=> BK = BC
=> \(\Delta\)BKC cân
=> \(\widehat{K}=\widehat{C}\Rightarrow\widehat{K}-\widehat{DKA}=\widehat{C}-\widehat{ECD}\Rightarrow\widehat{DKI}=\widehat{DCI}\) => \(\Delta\)KCD cân => KD = DC
Xét \(\Delta\)KDI và \(\Delta\)CDI có :
\(\hept{\begin{cases}DI\text{ chung}\\KI=IC\left(\text{gt}\right)\\KD=DC\end{cases}}\)=> \(\Delta\)KDI và \(\Delta\)CDI (c.c.c) => \(\widehat{I_1}=\widehat{I_2}\)(góc tương ứng)
mà \(\widehat{I_1}+\widehat{I_2}=180^{\text{o}}\Rightarrow\widehat{I_2}=90^{\text{o}}\Rightarrow DI\perp BC\left(1\right)\)
Xét \(\Delta\)KBI và \(\Delta\)CBI có :
\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\BK=BC\\AI\text{ chung}\end{cases}}\) \(\Delta\)KBI và \(\Delta\)CBI (c.g.c) => \(\widehat{I_1}=\widehat{I_2}=90^{\text{o}}\)(góc tương ứng) => \(AI\perp BC\left(2\right)\)
Từ (1) và (2) => A;D;I thẳng hàng
ABCHKE
a) Xét \(\Delta ABE\) và \(\Delta KBE\) , có :
BE : chung
\(\widehat{ABE}\) = \(\widehat{KBE}\) ( gt )
\(\widehat{BA\text{E}}\) = \(\widehat{BKE}\) ( = 90o )
=> tam giác ABE = tam giác KBE ( ch - gn )
Vậy tam giác ABE = tam giác KBE ( ch - gn )
b) Ta có : góc BAE + góc EAH = 180o ( kề bù ) mà góc BAE = 90o nên góc EAH = 90o
Xét tam giác EAH và tam giác EKC , có :
góc EAH = góc EKC ( = 90o )
góc AEH = góc KEC ( đối đỉnh )
EA = EK ( tam giác ABE = tam giác KBE )
=> tam giác EAH = tam giác EKC ( cgv - gnk )
=> AH = KC ( hai cạnh tương ứng )
Vậy AH = KC
\(\Delta ABE\)
ABCHKE
a) Xét \(\Delta ABE\) và \(\Delta KBE\) , có :
BE : chung
\(\widehat{ABE}\) = \(\widehat{KBE}\) ( gt )
\(\widehat{BA\text{E}}\) = \(\widehat{BKE}\) ( = 90o )
=> tam giác ABE = tam giác KBE ( ch - gn )
Vậy tam giác ABE = tam giác KBE ( ch - gn )
b) Ta có : góc BAE + góc EAH = 180o ( kề bù ) mà góc BAE = 90o nên góc EAH = 90o
Xét tam giác EAH và tam giác EKC , có :
góc EAH = góc EKC ( = 90o )
góc AEH = góc KEC ( đối đỉnh )
EA = EK ( tam giác ABE = tam giác KBE )
=> tam giác EAH = tam giác EKC ( cgv - gnk )
=> AH = KC ( hai cạnh tương ứng )
Vậy AH = KC