Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
***Hình bạn tự vẽ nha***
a, Xét tam giác ABC và tam giác BHA có :
Góc ABC chung
Góc BAC = góc BHA ( =90°)
==> Tam giác ABC đồng dạng tam giác HBA ( g.g )
==> AB/HB = BC/AB ==> AB^2 = HB. BC
A B C D K E F H
a, ABCD là hình thang (gt) => AB // CD (đn)
=> OA/OC = OB/OD (talet) (1)
có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)
=> FO/OB = OE/OA ; xét tg AOB
=> FE // AB (talet đảo)
b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE
=> ^DAO = ^OEB và ^ADO = ^OBE (đl)
xét tg ADO và tg EBO
=> tg ADO đồng dạng với tg EBO (g-g)
=> AO/OE = DO/OB (2)
+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)
=> AB/EF = CD/AB
=> AB^2 = EF.CD
c, kẻ AH _|_ BD ; CK _|_ BD
có S1 = OB.AH/2 ; S2 = OD.CK/2 => S1.S2 = OB.AH.OD.CK/4
CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4
=> S1.S2 = S3.S4
A A B B C C M M D D E E F F N N F' F'
a) Em tham khảo tại đây.
b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE
Theo câu a ta có DF' = 2AM (1)
Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.
Vậy nên AM = ND (2)
Từ (1) và (2) suy ra NF' = ND
Lại có F'F = DE nên FN = EN hay N là trung điểm EF.
c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)
Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)
nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)
\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)
Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Vậy ta đã chứng minh xong.