K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

Kẻ AD//BC(D thuộc BM)

Có:M là trung của của AC

\(\Rightarrow\frac{AD}{BC}=\frac{MD}{MB}=\frac{MA}{MC}=1\)

\(\Rightarrow AD=BC,MD=MB\)

Ta có:\(\frac{IB}{ID}=\frac{BH}{AD}=\frac{AC}{BC}\)

\(\Rightarrow\frac{IB}{IB+ID}=\frac{AC}{AC+BC}\)

\(\Rightarrow\frac{IB}{BD}=\frac{AC}{AC+BC}\)

\(\Rightarrow\frac{IB}{2MB}=\frac{AC}{AC+BC}\)

\(\Rightarrow\frac{IB}{MB}=\frac{2AC}{AC+BC}\)

\(\Rightarrow\frac{IB}{MB-IB}=\frac{2AC}{AC+BC-2AC}\)

\(\Rightarrow\frac{IB}{IM}=\frac{2AC}{BC-AC}\)

\(\Rightarrow\frac{IB}{IM}=\frac{2AC}{BC-BH}\Rightarrow\frac{IB}{IM}=\frac{2AC}{CH}\)

\(\Rightarrow\frac{IB}{IM}=\frac{2AC.CB}{CH.CB}\)

Mà \(\widehat{CHA}=\widehat{CAB}=90^O,\widehat{ACH}=\widehat{ACB}\)

\(\Rightarrow\Delta CHA\)đồng dạng \(\Delta CAB\left(g.g\right)\)

\(\Rightarrow\frac{CA}{CB}=\frac{CH}{CA}\Rightarrow CA^2=CB.CH\)

\(\Rightarrow\frac{IB}{IM}=\frac{2AC.CB}{AC^2}\Rightarrow\frac{IB}{IM}=\frac{CB}{\frac{CA}{2}}\Rightarrow\frac{IB}{IM}=\frac{CB}{CM}\)

\(\Rightarrow CI\)là p/g \(\widehat{MCB}\)

\(\Rightarrow CI\)là p/g \(\widehat{ACB}\)

Cre:hoidap247

23 tháng 4 2020

bạn vào link này nhé, mk ko bt cho ảnh kiểu j hết

file:///C:/Users/ANH%20QUY/Pictures/Capture.PNG

25 tháng 4 2021

A B C H I 3 5 K M N

a) Xét \(\Delta ABC\)và \(\Delta HBA\)

           \(\widehat{A}=\widehat{H}=90^o\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)

\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)

b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co

\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Vì BI là phân giác của góc ABH

\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)

c) Xét tam giác CHA và tam giác AHB 

\(\widehat{H}=\widehat{H}=90^o\)

\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)

=> Tam giác CHA ~ tam giác AHB (gg)

\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)

Vì BI là phân giác của tam giác AHB

\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)

Vì CK là phân giác của tam giác AHC 

\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)

Từ (1), (2) và (*)

\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)

d) Gọi N là giao điểm của HM và AC

=> bài toán trở thành chứng minh N là trung điểm

25 tháng 4 2021

bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh

Bạn nói rõ AB và AC bằng bao nhiêu đi bạn?

5 tháng 4 2021

AB=6, AC=8 ạ

 

6 tháng 3 2022

a, Xét tam giác ABC và tam giác HBA ta có 

^B _ chung 

^BAC = ^BHA = 900

Vậy tam giác ABC ~ tam giác HBA (g.g) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=15cm\)

\(\dfrac{AC}{AH}=\dfrac{BC}{AB}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{36}{5}cm\)

\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{27}{5}cm\)

=> CH = 48/5 cm 

c, \(\dfrac{S_{ACD}}{S_{HCE}}=\left(\dfrac{AC}{HC}\right)^2=\dfrac{25}{16}\)

 

 

15 tháng 3 2022

freqché tonery élooin shçç 

arzàyu radio rubsz tqsd

çàèé sonuhy,lafneq toin

çàea & reszao and shoppea

reach 123 tusqi yuoyuè 

                               (reachèst)