Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :
BC^2 = AC^2 + AB^2
BC^2 = 3^2 + 4^2
BC^2 = 9 + 16
BC^2 = 25
BC = căn bậc 2 của 25
BC = 5 ( cm )
vậy BC = 5 cm
• diện tích của tam giác ABC là :
3 . 4 : 2 = 6 ( cm^2 )
vậy diện tích của tam giác ABC là 6 cm^2
b. xét tam giác HBA và tam giác HAC, ta có :
góc HBA = góc HAC ( hai góc kề bù )
góc A là góc chung ( gt )
do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )
c. HA/HB = HC/HA ( cmt )
=> HA^2 = HB . HC
d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )
nên BD = 1/2 . 5 = 2,5 ( cm )
mà BD = DC = 1/2BC
=> DC = 2,5 ( cm )
vậy BC , DC = 2,5 cm
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1.8cm
\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
d: ΔABC có AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a) \(\Delta ABC\) có \(AD\) là phân giác \(\widehat{BAC}\) theo tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{AB}=\frac{DC}{AC}\) \(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)
hay \(\frac{DB}{DC}=\frac{8}{6}=\frac{4}{3}\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\) cm
mà \(\frac{DB}{DC}=\frac{4}{3}\)\(\Rightarrow\) \(\frac{DB}{4}=\frac{DC}{3}=\frac{DB+DC}{4+3}=\frac{BC}{7}=\frac{10}{7}\)
suy ra: \(DB=\frac{10}{7}.4\approx5,71\)
\(DC=\frac{10}{7}.3\approx4,29\)
A B C H D E F
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)
b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)
\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)
Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)
\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)
\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)
a) Do AD là phân giác của ∠A
⇒ DB/DC = 8/6 = 4/3
b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:
∠HAB = ∠HCA (cùng phụ ∠B)
⇒ ∆AHB ∽ ∆CHA (g-g)
⇒ AH/CH = AB/CA
A B C H D 1 1 1
a) Vì AD là tia phân giác của \(\widehat{BAC}\) nên ta có:
\(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\)
b) Theo định lý Pi-ta-go ta có:
BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC = \(\sqrt{100}\)= 10 (cm)
c) Ta có:
\(\widehat{B_1}+\widehat{C_1}=90^0\) (2 góc phụ nhau) (1)
\(\widehat{B_1}+\widehat{A_1}=90^0\) (2 góc phụ nhau) (2)
Từ (1), (2) \(\Rightarrow\widehat{C_1}=\widehat{A_1}\) (3)
Xét \(\Delta HBA\) và \(\Delta HAC\) ta có:
\(\widehat{BHA}=\widehat{BAC}=90^0\) (4)
Từ (3), (4) \(\Rightarrow\Delta HBA\sim\Delta HAC\) (G-G)