K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

Giai dùm câu d

3 tháng 5 2016

ai đó làm ơn giải hộ mình bài này với

3 tháng 5 2016

a) Áp dụng định lý PYTAGO vào tam giác ABC có

   BC^2=AB^2+AC^2

           = 9^2+12^2=225

BC= 15

Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC 

                                         => 1/2.AH = Sabc: BC = 3.6=> AH =7,2

26 tháng 6 2021

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

3 tháng 8 2021

cảm ơn bn

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
25 tháng 4 2021

A B C H I 3 5 K M N

a) Xét \(\Delta ABC\)và \(\Delta HBA\)

           \(\widehat{A}=\widehat{H}=90^o\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)

\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)

b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co

\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Vì BI là phân giác của góc ABH

\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)

c) Xét tam giác CHA và tam giác AHB 

\(\widehat{H}=\widehat{H}=90^o\)

\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)

=> Tam giác CHA ~ tam giác AHB (gg)

\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)

Vì BI là phân giác của tam giác AHB

\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)

Vì CK là phân giác của tam giác AHC 

\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)

Từ (1), (2) và (*)

\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)

d) Gọi N là giao điểm của HM và AC

=> bài toán trở thành chứng minh N là trung điểm

25 tháng 4 2021

bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh