Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\), \(\widehat{BAH}\) là góc chung.
\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)
\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)
- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\), \(\widehat{CAH}\) là góc chung.
\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
Ta có \(OA=OB\) nên △OAB cân tại O.
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)
Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)
\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.
=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
a: Xét tứ giác BMDH có
gócc BMD+góc BHD=180 độ
=>BMDH là tứ giác nội tiếp
b: góc AMN+góc OAM
=góc ADN+(180 độ-góc AOB)/2
=90 độ-góc HAC+90 độ-góc AOB/2
=180 độ-(90 độ-góc ACB)-góc ACB
=90 độ
=>MN vuông góc AO
=>MN//tiếp tuyến tại A của (O)
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)
Ta có: \(\Delta AFH\) vuông tại F có I là trung điểm AH \(\Rightarrow IA=IH=IF\)
\(\Rightarrow\Delta IFA\) cân tại I \(\Rightarrow\angle IAF=\angle IFA\Rightarrow\angle FIH=2\angle FAH\)
Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp
Tương tự \(\Rightarrow HECD,AEHF\) nội tiếp
\(\Rightarrow\angle FEB=\angle FCB=\angle HCD=\angle HED\)
\(\Rightarrow\angle FED=2\angle FEH=2\angle FAH=\angle FID\)
\(\Rightarrow DEIF\) nội tiếp
A