\(90^0\) ( AB < AC ) . I là trung điểm của BC . Trung tực của BC cắ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

góc A = \(90^0\) nha mọi ng 

17 tháng 4 2019

câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB

Xét tam giác ABD và tam giác EBD có:

AB=EB(gt)

góc ABD=góc EBD(vì BD là phân giác góc ABC

Cạnh BD chung

Từ đó suy ra tam giác ABD= tam giác EBD

Suy ra góc ADB=góc EDB( 2 góc t/ ư)

Suy ra DB là phân giác góc ADE

17 tháng 4 2019

d) Gọi H  là giao điểm của AI và BE

Tam giác ACB vuông tại A có I là trung điểm BC

=> AI=CI=BI

=> Tam giác CIA cân tại I

=> \(\widehat{CAI}=\widehat{ACI}\Rightarrow\widehat{EAI}=\widehat{ECI}=\widehat{EBI}\)

Để AI vuông BC thì \(\widehat{EAH}=\widehat{ABH}\)( cùng phụ với góc HAB)

Khi đó \(\widehat{EBI}=\widehat{EBA}\)do vậy nên tam giác EAB =tam giác EIB suy ra AB=AI=1/2 BC

Vậy để AI vuông BE thì tam giác ABC có AB=1/2 BC

a: Xét ΔBED có 

BA là đường cao

BA là đường trung tuyến

Do đo:ΔBED can tại B

=>\(\widehat{BED}=\widehat{BDE}\)

Ta có: E nằm trên đường trung trực của BC

nên EB=EC
=>ΔEBC cân tại E

=>ΔEBC cân tại E

=>\(\widehat{BED}=2\cdot\widehat{ACB}=\widehat{BDE}\)

d: Xét ΔBKC có

CA là đường cao

KI là đường cao

CA cắt KI tại E

Do đó: E là trực tâm

=>BE vuông góc với KC

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

11 tháng 7 2015

Nhiều quá, chắc không làm nổi

19 tháng 7 2015

làm xong có lẹ mk thành thần đất sét mất rồi

12 tháng 4 2017

Bạn tự vẽ hình nhé. Bài này khá dài nên mình trình bày vắn tắt, có gì không hiểu bạn hỏi lại nhé.
a, Tam giác BDE có BA vuông góc với DE , AD = AE
=> BA vừa là đường cao vừa là trung tuyến
=> Tam giác BDE cân tại B
=> góc BDE = góc BED (1)
Vì E thuộc trung trực của BD nên EB= EC ( t/c đường trung trực)
=> Tam giác EBC cân tại E
=> Góc EBC = ECB
Mà góc BED = góc EBC + ECB ( góc ngoài tam giác)
=> Góc BED = 2 góc ECB = 2 góc ACB (2)
Từ (1) và (2) => Góc BDE = 2 góc ACB
b, Vì I là trung điểm của BC nên AI = IC
=>Tam giác ACI cân tại I
=> Góc IAC = ICA = ACB
Mà IAC = DAM (đối đỉnh)
=> DAM = ACB
Theo ý a: BDE = 2 ACB = 2 DAM
Mà BDE = DAM + AMD ( góc ngoài )
=> 2 ACB = DAM + AMD
=> DAM + DAM = DAM + AMD
=> DAM = AMD
=> Tg AMD cân tại D
=> MD = AD

12 tháng 4 2017

Tiếp ý b:
Vì MD = AD (cmt)
=> MD + DB = EA + DB ( Vì AD = EA)
=> MB = EA + BE ( VÌ BE = BD do tam giác BED cân )
=> MB = EA + EC ( Vì BE = EC do tam giác EBC cân )
=> MB = AC ( đpcm )
c, Kẻ hình ra thấy DE < BC mà ??!
d, Xét tam giác BCK có CA và KI là 2 đường cao
Mà AC giao với KI tại E
=> BE là đường cao thứ 3
=> BE vuông góc với CK
e, AI vuông góc với BE
<=> A thuộc đường trung trực của BC
<=> AB = BC
<=> Tam giác ABC vuông cân tại A

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0