K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AC=\sqrt{26^2-24^2}=10\left(cm\right)\)

\(IM=\sqrt{65^2-25^2}=60\left(cm\right)\)

Xét ΔABC vuông tại A và ΔIMN vuông tại I có

AB/IM=AC/IN

Do đó: ΔABC∼ΔIMN

Mệttttt partttt 2 ;-;

\(AC^2=BC^2-AB^2=\sqrt{26^2-24^2}\\ =10\\ MI^2=MN^2-IN^2=\sqrt{65^2-25^2}\\ =60\\ Ta.có:\\ \dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\left(vì\dfrac{10}{25}=\dfrac{24}{60}=\dfrac{26}{65}\right)\\ \Rightarrow\Delta ABC~\Delta IMN\)

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượtlấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.1.Chứng minh MN//BC2. Tính MN biết BC = 36 cmCâu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳngAD = 5 cm. Chứng minh ABD \= ACB [Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,AC = 20 cm. Tính DB và DC.Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và...
Đọc tiếp

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượt
lấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.
1.Chứng minh MN//BC
2. Tính MN biết BC = 36 cm
Câu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳng
AD = 5 cm. Chứng minh ABD \= ACB [
Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,
AC = 20 cm. Tính DB và DC.
Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH.
1.  Chứng minh BA2 = BH.BC.
2.  Tính độ dài cạnh AC khi biết AB = 30 cm, AH = 24 cm.
3.  Trên cạnh AC lấy điểm M sao cho CM = 10 cm, trên cạnh BC lấy điểm N sao cho CN
= 8 cm. Chứng minh tam giác CMN vuông.
4.  Chứng minh CM.CA = CN.CB
Câu 5. (7đ) Cho tam giác ABC nhọn và đường cao AH. Kẻ HI ⊥ AB và HK ⊥ AC.
1. Chứng minh AH2 = AI.AB.

2. Chứng minh 4AIK v 4ACB

3.  Đường phân giác của góc AHB cắt AB tại E. Biết EB/ AB = 2/ 5 . Tính tỉ số BI /AI
Câu 6.  Cho tam giác AOB cân tại O (O <b 90◦
) và hai đường cao AD, BE. Đường vuông
góc với OA tại A cắt tia OB tại C. Chứng minh:
1.  ED//AB.
2.  OB2 = OE.OC
3. AB là đường phân giác của DAC \.
4. (Chứng minh BD.OA = BC.OE

giúp mình với nhé :( cần gấp

0

Bài 1: 

Xét ΔBMC có 

N là trung điểm của BM

I là trung điểm của BC

Do đó: NI là đường trung bình của ΔBMC

Suy ra: NI//MK

Xét ΔANI có 

M là trung điểm của AN

MK//NI

Do đó: K là trung điểm của AI

5 tháng 10 2021

em cảm ơn ạ

6 tháng 10 2019

A B C H D E 1 2 1 2 3

a ) Ta có :

\(AB=BD\left(gt\right)\)

\(\Leftrightarrow\Delta ABD\) cân tại B

\(\Leftrightarrow\widehat{BAD}=\widehat{D_1}\)

Lại có : \(\widehat{BAD}+\widehat{A_3}=90^o\)

\(\Leftrightarrow\widehat{D_1}+\widehat{A_3}=90^o\)

Mà \(\widehat{A_2}+\widehat{D_1}=90^o\)

\(\Leftrightarrow\widehat{A_2}=\widehat{A_3}\)

Xét \(\Delta HAD,\Delta EAD\) CÓ :

\(\hept{\begin{cases}AH=AE\left(gt\right)\\\widehat{A_2}=\widehat{A_3}\\ADchung\end{cases}}\)

\(\Leftrightarrow\Delta HAD=\Delta EAD\left(c.g.c\right)\)

\(\Leftrightarrow\widehat{AHD}=\widehat{AED}-90^o\)

\(\Leftrightarrow AE\perp EC\left(đpcm\right)\)

b ) Xét \(\Delta DEC\) vuông tại E

\(\Rightarrow BC>EC\)

Ta có : 

\(BC+AH=BD+DC+AH=AB+DC+AH>AB+EC+AE\)

\(=AB+AC\left(đpcm\right)\)

Chúc bạn học tốt !!!

24 tháng 2 2022

e làm a,b chung luôn nha chị

Xét tam giác ABC và tam giác A`B`C`, có:

\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )

Góc A = góc A` = 90 độ

=> tam giác ABC đồng dạng tam giác A`B`C`

=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )

24 tháng 2 2022

=^= um dù sao cũm cảm ơn nhó:33

1 tháng 3 2022

gfvfvfvfvfvfvfv555

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc MBI chung

=>ΔBMI đồng dạng với ΔBAC

=>BM/BA=BI/BC

=>BM*BC=BA*BI

c: ΔCMD đồng dạng với ΔCAB

=>CM/CA=CD/CB

=>CM/CD=CA/CB

=>ΔCMA đồng dạng với ΔCDB

=>S CMA/S CDB=(CA/CB)^2=1/4

=>S CMA=15cm2

18 tháng 6 2020

A B C F E K H

a) Xét tam giác AFC và tam giác AEB có: 

^A chung 

^F vuông góc ^E

Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)

vì tam giác AFC đồng dạng tam giác AEB (cmt) nên: 

=> AF/AC = AE/AB 

=> AE.AC = AF.AB (đpcm)

b) từ H kẻ HK vuông góc BC

+) xét tam giác BKH và tam giác BEC có: 

^HBC chung

^BKH = ^BEC (= 90 độ)

vậy: tam giác BKH đồng dạng tam giác BEC (g.g)

=> BK/BH = BE/BC

=> BH.BE = BK.BC (1)

+) xét tam giác CKH và tam giác CFB: 

^BHC chung

^CKH = ^CFB (= 90 độ)

vậy: tam giác CKH đồng dạng tam giác CFB 

=> CK/CH = CF/CB

=> CH.CF = BC.CK (2)

Từ (1) và (2) ta có: 

BH.BE + CH.CF = BK.BC + CK.BC

                           = BC.(BK + CK)

                           = BC.BC

                           = BC^2 

=> BH.BE + CH.CF = BC^2 (đcpm)

3 tháng 5 2016

a) Xét tam giác ABC và tam giác MDC có

                ^C chung

                 ^BAC=^DMC=90

=> tam giác ABC đông dạng vs tam giác MDC ( g-g)

b)Xét tam giác BIM bà tam giác BCA có

                IMB = ^BAC=90

               ^B chung

=> tam giác BIM ~BCA

=> BI/BM=BC/BA=>BI.BA=BM.BC

c)

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AB=AD\cdot AC\)

Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)

b) Sửa đề: Cách đều điểm O

Ta có: ΔEBC vuông tại E(gt)

nên E,B,C cùng nằm trên đường tròn đường kính BC

hay E,B,C cùng nằm trên (O)(1)

Ta có: ΔDBC vuông tại D(gt)

nên D,B,C cùng nằm trên đường tròn đường kính BC

hay D,B,C cùng nằm trên (O)(2)

Từ (1) và (2) suy ra E,B,C,D cùng nằm trên (O)