Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)
\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)
b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)
\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)
\(\Leftrightarrow0=0\) (đúng)
\(\RightarrowĐPCM\)
b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)
\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)
\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)
\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)
\(\RightarrowĐPCM\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow a^2+b^2+c^2=2a^2\)
\(\Leftrightarrow a^2=b^2+c^2\)
\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo
Từ C kẻ đường cao CH xuống đáy AB
\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)
Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> AB2 = AC2 + BC2
=> tam giác ABC vuông tại C
\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)
Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)
\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo