K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Ta có hình vẽ:

A B C H D

a/ Xét tam giác ABH và tam giác DBH có:

BH: chung

\(\widehat{AHB}\)=\(\widehat{DHB}\) = 900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\) (2 góc tương ứng)

=> BC là phân giác \(\widehat{ABD}\) (đpcm)

b/ Xét tam giác ACH và tam giác DCH có:

CH : cạnh chung

\(\widehat{AHC}\)=\(\widehat{DHC}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ACH = tam giác DCH (c.g.c)

=> CA = CD (2 cạnh tương ứng)

6 tháng 7 2016

a). Xét tam giác ABH vuông tại H và tam giác DBH vuông tại H có:

AH=DH (GT)

BH là cạnh chung.

=> Tam giác ABH=tam giác DBH (hai cạnh góc vuông).

=> Góc ABH=góc DBH 

=> BC là phân giác của góc ABD

Xét tam giác CAH vuông tại H và tam giác CDH vuông tại H có:

AH=DH (GT)

CH là cạnh chung.

=> Tam giác CAH=tam giác CDH (2 cạnh góc vuông)

=> Góc ACH=góc DCH

=> CB là phân giác của góc ACD

b). Vì tam giác ABH=tam giác DBH => BA=BD

     Vì tam giác CAH=tam giác CDH => CA=CD

 

6 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABH và tam giác DBH có:

AH = DH (gt)

AHB = DHB ( = 900)

HB là cạnh chung

=> Tam giác ABH = Tam giác DBH (c.g.c)

=> ABH = DBH (2 góc tương ứng)

=> BH là tia phân giác của ABD

Xét tam giác ACH và tam giác DCH có:

AH = DH (gt)

AHC = DHC ( = 900)

HC là cạnh chung

=> Tam giác ACH = Tam giác DCH (c.g.c)

=> ACH = DCH (2 góc tương ứng)

=> CH là tia phân giác của ACD

b.

CA = CD (Tam giác ACH = Tam giác DCH)

BD = BA (Tam giác ABH = Tam giác DBH)

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

24 tháng 12 2016

a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).

17 tháng 12 2017

a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).

6 tháng 12 2019

A B C H D

A) XÉT \(\Delta BAH\)\(\Delta BDH\)

\(AH=DH\left(GT\right)\)

\(\widehat{BHD}=\widehat{BHA}\)(HAI ĐƯỜNG THẲNG VUÔNG GÓC)

\(BH\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta\text{​​BAH}=\Delta BDH\left(C-G-C\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CAD}\)HAI GÓC TƯƠNG ỨNG(1)

TIA AC NẰM GIỮA HAI  TIA BA VÀ BD =>BC LÀ PHÂN GIÁC CỦA GÓC ABD

CÒN LẠI TƯƠNG TỰ

6 tháng 12 2019

@trần quốc tuấn

Mình chỉ cần câu d) thôi những câu khác mình làm được

b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có 

CH chung

HA=HD

Do đó: ΔCHA=ΔCHD

Suy ra: CA=CD