Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
Xét tam giác ABO và tam giác CDO có:
AO = CO (BO là trung truyến của tam giác ABC)
AOB = COD (2 góc đối đỉnh)
BO = DO (gt)
=> Tam giác ABO = Tam giác CDO (c.g.c)
=> BAO = DCO (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD.
b.
BO là trung tuyến của tam giác ABC
=> O là trung điểm của AC
=> AO = CO = \(\frac{1}{2}AC\) (1)
- BO = DO (gt) => CO là trung tuyến của tam giác BCD
- BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD
=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD
=> I là trọng tâm của tam giác BCD.
=> IO = \(\frac{1}{3}OC\) (2)
Thay (1) vào (2), ta có:
IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)
\(\Rightarrow AC=6\times IO\)
c.
AB // CD
=> EBM = DCM (2 góc so le trong)
Xét tam giác EBM và tam giác DCM có:
EBM = DCM (chứng minh trên)
BM = CM (M là trung điểm của BC)
BME = CMD (2 góc đối đỉnh)
=> Tam giác EBM = Tam giác DCM (g.c.g)
=> BE = CD (2 cạnh tương ứng)
mà CD = AB (tam giác ABO = tam giác CDO)
=> BE = AB.
Chúc bạn học tốt
Ý a, b chắc em tự làm được (với kiểm tra lại câu b nhé)
c, Vì tgiac ECD = tgiac FCD
=> DE=DF
- Xét tgiac HKC có 2 đường cao HF và KE giao nhau tại D
=> D là trực tâm và CD là đường cao (t.c)
=> CD \(\perp\)HK (1)
- Theo trường hợp g-c-g
=> tgiac KDF = tgiac HDE
=> DK=DH
=> tgiac DHK cân tại D
mà DM là trung tuyến do M là trung điểm HK
=> DM \(\perp\) HK (2)
- Từ (1)(2) => C, D, M thẳng hàng (đpcm)
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
Bài 1:
A B C M D - -
a) Xét △DAB và △DAC có:
ABD = ACD (= 90o)
AD: chung
AB = AC (△ABC cân)
=> △DAB = △DAC (ch-cgv)
b) Vì △DAB = △DAC
=> DB = DC (2 cạnh tương ứng)
=> △DBC cân
c) Xét △AMB và △AMC có:
AB = AC (△ABC cân)
AM: chung
MB = MC (M: trung điểm BC)
=> △AMB = △AMC (c.c.c)
=> MAB = MAC (2 góc tương ứng)
=> AM là phân giác BAC (1)
Vì △DAB = △DAC
=> DAB = DAC (2 góc tương ứng)
=> AD là phân giác BAC (2)
Từ (1) và (2)
=> A, M, D thẳng hàng
Bạn tự vẽ hình nhé
Bài 1.
a) Xét tam giác MAB và tam giác MAC có:
AB = AC (tam giác ABC cân tại A )
AM là cạnh chung
MB = MC (M là trung điểm của BC )
=> tam giác MAB = tam giác MAC ( c- c - c)
=> góc MAB = góc MAC ( 2 góc tương ứng ) (1)
Xét 2 tam giác vuông: tam giác DAB và tam giác DAC có:
AB = AC ( tam giác ABC cân tại A )
góc MAB = góc MAC (c/m ở 1)
=> Tam giác DAB = tam giác DAC ( CH - GN)
b) Ta có tam giác DAB = tam giác DAC ( c/m ở câu a)
=> DB = DC ( 2 cạnh tương ứng )
=> Tam giác DBC cân tại D
còn câu c chờ mình 1 chút nhé
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDClà hình bình hành
SUy ra: AB//CD; AB=CD; AD//BC và AD=BC
b: Xét ΔABD có
BM là đường trung tuyến
AE là đường trung tuyến
BM cắt AE tại I
Do đó; I là trọng tâm của ΔABD
Xét ΔACD có
DF là đường trung tuyến
CM là đường trung tuyến
DF cắt CM tại K
Do đó: K là trọng tâm của ΔACD
Giúp Mk nha
Mk đang cần gấp