Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hinh thi tu ve nka. Minh chi lam thoi.
a. Xet 2 tam giac vuog: HAB va KAC co:
AB=AC ( ABC can tai A)
A chung
=> HAB=KAC ( cah huyen-goc nhon )
=> AH=AK (2 cah tuog ung)
b. Ta co: KIB=HIC ( doi.d )
Trog tam giac KIB co: KIB+IKB+KBI=180 ( dinh.l)
Trong tam giac HIC co: HIC+IHC+HCI=180 (dinh.l)
Ma: IKB=IHC (=90)
KIB=HIC ( CMT )
=> KBI = HCI
Mat khac, ta co: AK+KB=AB ; AH+HC=AC
Ma: AK=AH(CMT)
AB=AC ( ABC can tai A)
=> KB=HC
Xet 2 tam giac vuog: KIB va HIC co:
KB=HC (CMT)
KBI=HCI( CMT)
Suy ra: KIB=HIC ( cah huyen goc nhon )
=> KI = HI ( 2 cah tuog ung)
Ta thay HB cat AI tai I => AI nam giua AB va AC (1)
Xet 2 tam giac vuog: KIA va HIA co:
AI chug
KI=HI ( CMT )
Suy ra: KIA=HIA ( cah huyen-cah goc vuog)
=> KAI=HAI (2 cah tuog ug) (2)
Tu (1) va (2) suy ra:
AI la phan giac cua goc A ( BAC )
Bài làm A B C K H O
Xét ΔAHB và ΔAKC có:
AB=AC(gt)
góc A chung
AH=AK(gt)
=>ΔAHB=ΔAKC(c.g.c)
=>ˆABH=ˆACK
Có: ˆB=ˆABH+ˆCBH
ˆC=ˆACK+ˆBCK
Mà ˆB=ˆC(gt)
ˆABH=ˆACK(cmt)
=> ˆCBH=ˆBCK
=>ΔOBC cân tại O