Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
ta có:AE vuông góc với AC ;AB vuông góc với AF
suy ra: góc AEC=90độ;góc BAF=90đ
mà góc BAC+góc EAB= góc AEC=90đ
góc BAC+góc CAF=góc BAF=90đ
suy ra: góc EAB=góc CAF
xét tam giác AEBvà ACF có:
AE=AC
AB=AF
góc EAB= góc ACF (cmt)
suy ra tam giác AEB=ACF ( C.G.C)
suy ra EB= CF ( cạnh tương ứng)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó: ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//CD và AB=CD
AB=CD
AB=BE
Do đó: CD=BE
Xét tứ giác CDEB có
CD//EB
CD=EB
Do đó: CDEB là hình bình hành
c: Xét ΔADE có
DB,EM là đường trung tuyến
DB cắt EM tại K
Do đó: K là trọng tâm của ΔADE
=>EK=2KM