Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\right)\)Tại x=-1, ta có: \(P=3x^2+5=3\left(-1\right)^2+5=3+5=8\)
Tại x=0, ta có: \(P=3x^2+5=3.0^2+5=0+5=5\)
Tại x=3, ta có: \(P=3x^2+5=3.3^2+5=3.9+5=27+5=32\)
(2) Ta có: \(P=3x^2+5\)mà \(x^2\ge0\)với mọi x => 3x^2 \(\ge\)0 với mọi x
Lại có 5 dương => P \(\ge\)0 hay đa thức P luôn dương với mọi giá trị của x
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3
TH1 : Ta thay đa thức trên có x = -1
\(3.\left(-1\right)^2+5=3.1+5=8\)
TH2 : Ta thay đa thức trên có x = 0
\(3.0^2+5=3.0.5=0\)
TH3 : Ta thay đa thức trên có x = 3
\(3.3^2+5=3.9+5=27+5=32\)
Ta KL đc : R luôn dương với mọi giá trị x
ta có x2+x+1= x2+x+1+x-x= (x+1)2-x
Vì (x+1)2 \(\ge\)0 và (x+1)2>x
nên x2+x+1 luôn luôn dương với mọi giá trị của x
xét x>0 suy ra biểu thúc có gi trị dương
xét x,0
ta có \(x^2\)>0
suy ra \(x^2\)+x > 0
suy ra \(x^2\)+x+1 luôn luôn dương với mọi gi trị của x
Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)= \(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)
= \(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3
Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến