Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b)\(A\left(x\right)+B\left(x\right)\)
\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)
a) \(A\left(x\right)+B\left(x\right)=4x^5-2x^2-1\)
\(\Rightarrow2x^4-3x^3-4x+\dfrac{1}{2}+B\left(x\right)=4x^5-2x^2-1\)
\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-2x^4+3x^3+4x-\dfrac{1}{2}\)
\(\Rightarrow B\left(x\right)=4x^5-2x^4+3x^3-2x^2+4x-\dfrac{3}{2}\)
b) \(A\left(x\right)-C\left(x\right)=2x^3\)
\(\Rightarrow2x^4-3x^3-4x+\dfrac{1}{2}-C\left(x\right)=2x^3\)
\(\Rightarrow C\left(x\right)=2x^4-3x^3-4x+\dfrac{1}{2}-2x^3\)
\(\Rightarrow C\left(x\right)=2x^4-3x^3-2x^3-4x+\dfrac{1}{2}\)
\(\Rightarrow C\left(x\right)=2x^4-5x^3-4x+\dfrac{1}{2}\)
a) B(x) = 4x5 -2x2 -1 - A(x) = 4x5 -2x2 -1 -2x4 +3x3+4x -1/2
B(x) = 4x5 -2x4 +3x3-2x2 +4x - 1/2
b) tt
a) Tính:
A(x) + B(x) = (5x - 2x4 + x3 - 5 + x2) + (-x4 + 4x2 - 3x3 + 7 - 6x)
= 5x - 2x4 + x3 - 5 + x2 + -x4 + 4x2 - 3x3 + 7 - 6x
= (5x - 6x) + (-2x4 - x4) + (x3 - 3x3) + (-5 + 7) + (x2 + 4x2)
= -x - x4 - 2x3 + 2 + 5x2
A(x) - B(x) + C(x) = (5x - 2x4 + x3 - 5x + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x) + (x + x3 - 2)
= 5x - 2x4 + x3 - 5 + x2 - -x4 - 4x2 + 3x3 - 7 + 6x + x + x3 - 2
= (5x + 6x + x) + [-2x4 + (-x4)] + (x3 + 3x3 + x3) + (x2 - 4x2) + (-5 - 7 - 2)
= 12x - 3x4 + 5x3 - 3x2 - 14
B(x) - C(x) - A(x) = (-x4 + 4x2 - 3x3 + 7 - 6x) - (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2)
= -x4 + 4x2 - 3x3 + 7 - 6x - x - x3 + 2 - 5x + 2x4 - x3 + 5 - x2
= (-x4 + 2x4) + (4x2 - x2) + (-3x3 - x3 - x3) + (7 + 2 + 5) + (6x - x - 5x)
= x4 + 3x2 - x3 + 14
C(x) - A(x) - B(x) = (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x)
= x + x3 - 2 - 5x + 2x4 - x3 + 5 - x2 - -x4 - 4x2 + 3x3 - 7 - 6x
= (x - 5x - 6x) + (x3 - x3 + 3x3) + (-2 + 5 - 7) + (5x - 6x) + (-x2 - 4x2)
= -10x + 3x3 - 4 - x - 5
Với x=1 thì đa thức A(x) có giá trị là:\(5\cdot1-2\cdot\left(1\right)^4+1^3-5+1^2\)
\(=5-2+1-5+1=0\)
=> x=1 là nghiệm.
Với x=1 thì đa thức B(x) có giá trị là:\(-\left(1\right)^4+4\cdot1^2-3\cdot1^3+7-6\cdot1\)
\(=-1+4-3+7-6=1\)
=> x=1 không phải là nghiệm.
Suy ra điều cần chứng minh
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
a: \(A\left(x\right)=x^2-3x-3x^2+6x+17\)
\(=-2x^2+3x+17\)
\(B\left(x\right)=3x^2-7x+3-3x^2+6x-12\)
\(=-x-9\)
b: \(A\left(x\right)+B\left(x\right)=-2x^2+3x+17-x-9=-2x^2+2x+8\)
c: \(A\left(x\right)-B\left(x\right)=-2x^2+3x+17+x+9=-2x^2+4x+26\)
a)
A(x)= x4 - 2x3 + 4x - 1
B(x)=3x4 +x3 -x2 - 3x -2
A(x)+B(x) =4x4 -3x3-x2 +x -3
b/ A(x)= x4 - 2x3 + 4x - 1
B(x)=3x4 +x3 -x2 - 3x -2
A(x)-B(x) =-2x4 -3x3-x2 +7x +1
c/
B(x)=3x4 +x3 -x2 - 3x -2
A(x)= x4 - 2x3 + 4x - 1
B(x)-A(x)=2x4 +3x3 -x2 -7x -1
a) Ta có:
\(x^4-2x^3+4x-1+3x^4+x^3-x^2-3x-2\)
\(\Leftrightarrow4x^4-x^3-x^2-x-3\)
b)
\(x^4-2x^3+4x-1-\left(3x^4+x^3-x^2-3x-2\right)\)
\(\Leftrightarrow x^4-2x^3+4x-1-3x^4-x^3+x^2+3x+2\)
\(\Leftrightarrow-2x^4-3x^3+x^2+7x+1\)
c)
\(3x^4+x^3-x^2-3x-2-\left(x^4-2x^3+4x-1\right)\)
\(\Leftrightarrow3x^4+x^3-x^2-3x-2-x^4+2x^3-4x+1\)
\(\Leftrightarrow2x^4+3x^3-x^2-7x-1\)