Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Thay từng giá trị của x vào rồi tính f(x).
a) Đặt A(x) = 0
Ta có:
3(x + 2) - 2x(x + 2) = 0
=> (x + 2)(3 - 2x) = 0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)
b) Đặt B(x) = 0
Ta có:
2x + 8 - 23 = 0
=> 2x + 8 = 23
=> 2x = 15
\(\Rightarrow x=\dfrac{15}{2}\)
Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)
c) Đặt C(x) = 0
Ta có:
-x5 + 5 = 0
=> -x5 = -5
=> x5 = 5
\(\Rightarrow x=\sqrt[5]{5}\)
Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)
d) Đặt D(x) = 0
Ta có:
2x3 - 18x = 0
=> x(2x2 - 18) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)
Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)
e) Đặt E(x) = 0
Ta có:
\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)
\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)
g) Đặt G(x) = 0
Ta có:
\(\dfrac{4}{25}-x^2=0\)
\(\Rightarrow x^2=\dfrac{4}{25}\)
\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)
Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)
h) Đặt H(x) = 0
Ta có:
x2 - 2x + 1 = 0
=> x2 - 2x = -1
=> x(x - 2) = -1
=> Ta có trường hợp:
+/ x = -1
Và x - 2 = 1 => x = 3
Mà \(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1
+/ x = 1
Và x - 2 = -1 => x = 1
Vậy nghiệm của đa thức H(x) là x = 1
k) Đặt K(x) = 0
Ta có:
5x . (-2x2) . 4x . (-6x) = 0
=> 240x5 = 0
=> x5 = 0
=> x = 0
Vậy nghiệm của đa thức K(x) là x = 0
Theo mình : bạn tác đôi 18x ra thành 9x - 9x rồi sử dụng tính chất phân phối .
a)
Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)
và \(-x+y-z=11_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:
\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)
Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)
Vậy.....
b); c); d); e) làm tương tự.
a) \(\left(-2xy3\right)\left(\frac{1}{3}xy^2\right)\)
\(=\left(-2.3.\frac{1}{3}\right)\left(x.x\right)\left(y.y^2\right)\)
\(=-2x^2y^3\)
=> Đơn thức này có bậc 5
b) \(\left(-18x^2y^2\right)\left(\frac{1}{6}x^2y^3\right)\)
\(=\left(-18.\frac{1}{6}\right)\left(x^2x^2\right)\left(y^2y^3\right)\)
\(=-3x^4y^5\)
=> Đơn thức này có bâc 9
Ta có x=17 => 18 = 17 + 1
Ta có :
A(x) = x^6 - 18x^5+ 18x^4-18x^3+18x^2-18x + 2
= 17^6-(17+1)*17^5+(17+1)*17^4-(17+1)*17^3+(17+1)*17^2-(17+1)*17+2
= 17^6-17^6-17^5+17^5+17^4-17^4-17^3+17^3+17^2-17^2-17+2
= -17+2
=-15
k cho mình nhé