\(P\left(x\right)=\text{ax}^2+bx+c\) ( a, b, c là hằng số ) thỏa mãn P(1) = P...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Có P(1) = a+b+c
P(-1) = a - b + c
Vì P(1) = P(-1) => a+b+c = a-b+c
=> b = -b
Lại có: P(-x)= \(ax^2-bx+c\)
\(P\left(x\right)=ax^2+bx+c\)
Mà b = -b (cmt)
=> bx = -bx
=> \(ax^2-bx+c\) = \(ax^2+bx+c\)
Hay P(x) = P(-x)

10 tháng 4 2020

Vì  \(P\left(x\right)=ax^2+bx+c\) với mọi x

=> Ta có: 

Với x = 0 => \(P\left(0\right)=c⋮5\)

Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)

Với  x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)

=> ( a + b ) + ( a  - b ) \(⋮\)

=> 2a \(⋮\)

=> a \(⋮\)

=> b \(⋮\)5

1 tháng 5 2019

đồng nhất hệ số

30 tháng 3 2017

Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi

22 tháng 2 2020

\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)

\(=a-b+c\)

\(f\left(2\right)=a.2^2+b.2+c\)

\(=4a+2b+c\)

\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)

\(=2a+4b-c=0\)

\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)

\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)

22 tháng 2 2020

Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

               \(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)

\(\implies\)  \(f\left(2\right)=2.f\left(-1\right)\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)\) \(\geq\)  \(0\) \(\left(đpcm\right)\)

28 tháng 2 2019

Do f(x) nhận 1 là nghiệm nên\(f\left(1\right)=a+b+c=0\)

Do f(x) nhận -1 là nghiệm nên\(f\left(-1\right)=a-b+c=0\)

\(\Rightarrow\left(a+b+c\right)+\left(a-b+c\right)=0\)

\(\Rightarrow2\left(a+c\right)=0\)

\(\Rightarrow a=-c\)

Nên a và c là 2 số đối nhau