\(f\left(x\right)\)thỏa mãn điều kiện :

                        

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

+) Với x = 0 ta có :

\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)

\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)

\(\Rightarrow0=-4.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0\)

Như vậy x = 0 là một nghiệm của đa thức f(x)

+) Với x = 4 ta có :

\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0\)

\(\Rightarrow f\left(2\right)=0\)

Như vậy x = 4 là một nghiệm của đa thức f(x)

Vậy đa thức f(x) có ít nhất hai nghiệm

_Chúc bạn học tốt_

30 tháng 5 2018

Bài giải 

Cho \(x=0\)thì \(0.f\left(-2\right)=-4.f\left(0\right)=0\)

Cho \(x=2\)thì \(2.f\left(0\right)=-2.f\left(2\right)\)nên \(f\left(2\right)=-f\left(0\right)=0\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm là \(0\) và \(2\).

21 tháng 1 2020

\(x.f\left(x+2\right)=\left(x^2-9\right).f\left(x\right)\)

+ Thay \(x=3\) vào đa thức \(f\left(x\right)\) ta được:

\(3.f\left(3+2\right)=\left(3^2-9\right).f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=\left(9-9\right).f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=0.f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=0\)

\(\Rightarrow f\left(5\right)=0:3\)

\(\Rightarrow f\left(5\right)=0.\)

Vậy \(x=5\) là nghiệm của đa thức \(f\left(x\right)\) (1).

+ Thay \(x=-3\) vào đa thức \(f\left(x\right)\) ta được:

\(-3.f\left[\left(-3\right)+2\right]=\left[\left(-3\right)^2-9\right].f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=\left(9-9\right).f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=0.f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=0\)

\(\Rightarrow f\left(-1\right)=0:\left(-3\right)\)

\(\Rightarrow f\left(-1\right)=0.\)

Vậy \(x=-1\) là nghiệm của đa thức \(f\left(x\right)\) (2).

+ Thay \(x=0\) vào đa thức \(f\left(x\right)\) ta được:

\(0.f\left(0+2\right)=\left(0^2-9\right).f\left(0\right)\)

\(\Rightarrow0.f\left(2\right)=\left(0-9\right).f\left(0\right)\)

\(\Rightarrow0=-9.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0:\left(-9\right)\)

\(\Rightarrow f\left(0\right)=0.\)

Vậy \(x=0\) là nghiệm của đa thức \(f\left(x\right)\) (3).

Từ (1), (2) và (3) \(\Rightarrow\) Đa thức \(f\left(x\right)\) có ít nhất 3 nghiệm đó là: \(x=3;x=-3\)\(x=0\left(đpcm\right).\)

Chúc bạn học tốt!

Tham khảo :

Xét với x=3x=3 thì : 3.f(5)=(329).f(3)3.f(5)=(32−9).f(3)

3.f(5)=0f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)

Xét với x=00=9.f(0)f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0

nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)

Xét với x=33.f(1)=0f(1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0

nên x=1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)

Từ (*)(1)(2) f(x)f(x) có ít nhất 3 nghiệm.

9 tháng 8 2018

Thay x = -3 thì 1 là nghiệm của P(x)

Thay x = 5 thì 5 là nghiệm của P(x)

Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.

Chúc bạn học tốt.

16 tháng 5 2017

thế @Trần Khánh Linh ai cần bạn xin lỗi đâu                                                                                                                                       mà bạn Thái viết nam hỏi học sinh lớp 7 chứ phải lớp 5 đâu mà bạn xía vào làm gì

14 tháng 5 2017

xin lỗi mk mới học lp 5 thôi

2 tháng 5 2019

(x-1) x f(x)=(x+2) x f(x+3)

Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)

            =>f(4)=0

Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)

           =>f(-2)=0

Thay x=4(thay bang 0 vi f(4)=0).....

Thay x=7 (ket qua o tren)

Thay x=10 kq o tren

 vay 5 nghiem la 1;2;4;7;10

mk chi tom tat thoi nha chuc bn hoc tot

7 tháng 7 2019

Ta có: Với 1=0 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Với x=-2 thì (-2-1).f(-2)=(-2+2).f(-2+3) hay (-3).f(-2)=0 do -3 khác 0 nên f(-2)=0 vậy -2 là 1 nghiệm của f(x)

Với x=4 ta có: (4-1).f(4)=(4+2).f(4+3) suy ra 0=6.f(7) (vì f(4)=0)

do 6 khác 0 nên f(7)=0 hay 7 là 1 nghiệm của f(x)

Với x=7 ta có: (7-1).f(7)=(7+2).f(7+3) suy ra 0=9.f(10) (vì f(7)=0)

do 9 khác 0 nên f(10) bằng 0 hay 10 là 1 nghiệm của f(x)

Với x=10 ta có: (10-1).f(10)=(10+2).f(10+3) suy ra 0=12.f(13) (vì f(10)=0)

do 12 khác 0 nên f(13)=0 hay 13 là 1 nghiệm của f(x)

Vậy 5 nghiệm của f(x) tìm được là: -2;4;7;10;13

7 tháng 7 2019

Không chứng minh tương tự được hả bạn???

Tại sao lại với 1=0?

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(f(1)=f(-1)\)

\(\Leftrightarrow a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\)

\(\Leftrightarrow 2(a_3+a_1)=0\Leftrightarrow a_3+a_1=0(1)\)

\(f(2)=f(-2)\)

\(\Leftrightarrow 16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\)

\(\Leftrightarrow 16a_3+4a_1=0\Leftrightarrow 4a_3+a_1=0(2)\)

Từ \((1);(2)\Rightarrow a_3=a_1=0\)

Do đó:
\(f(x)=a_4x^4+a_2x^2+a_0\)

\(\Rightarrow f(-x)=a_4(-x)^4+a_2(-x)^2+a_0=a_4x^4+a_2x^2+a_0\)

Vậy $f(x)=f(-x)$.