K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

6 tháng 11 2017

* Xét \(f\left(a\right)=x^2+a^2+b=0\)(điều 1)

      \(f\left(b\right)=x^2+ab+b=0\)(điều 2)

- Lấy (điều 1) - (điều 2), ta có:

a3 - ab = 0

=> a(a - b) = 0

=> \(\orbr{\begin{cases}a=0\\a-b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Vậy a = b = 0

6 tháng 11 2017

- Do f(a) = f(b) = 0 nên a,b là nghiệm của f(x)

* Xét f(a) = a2 + a2 + b  = 2a2 + b = 0 (điều 1)

       f(b) = b2 + ab + b = 0 (điều 2)

=> 2a2 + b = b2 + ab + b

=> 2a2 = b2 + ab

=> 2a2 = b.(b + a)

\(\Rightarrow\orbr{\begin{cases}2a^2=0\\b\left(b+a\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Vậy a = b = 0

20 tháng 9 2017

Ta có \(f\left(1\right)=a+b+c\)\(f\left(-1\right)=a-b+c\)

\(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)

\(f\left(x\right)=ax^2+bx+c=ax^2+c\)

\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)

Vậy \(f\left(x\right)=f\left(-x\right)\)

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ta có:

$f(4)=16a+4b+c$

$f(-2)=4a-2b+c$

Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$

$\Rightarrow f(-2)=-f(4)$

$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$

Ta có đpcm.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

6 tháng 3 2018

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

6 tháng 3 2018

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-