K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2

Ta có: x2>=0(với mọi x)

=>x2+1>=1(với mọi x)

=>(x2+1)2>0(với mọi x)

hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm

Vậy f(x) không có nghiệm

28 tháng 3 2018

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

27 tháng 5 2016

Ta có:

3\(x^6\)\(\ge\)0 với mọi x

2\(x^4\)\(\ge\)0 với mọi x

\(x^2\)\(\ge\)0 với mọi x

=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x

Vậy f(x) không co nghiệm

10 tháng 5 2018

ta có       \(3x^4\ge0\)    với mọi x

               \(x^2\ge0\)   với mọi x

\(\Rightarrow3x^4+x^2+2018\ge2018\) với mọi x

\(\Rightarrow A(x)\ge2018\)  với mọi x

\(\Rightarrow A(x)>0\) với mọi x

\(\Rightarrow A\left(x\right)\ne0\) với mọi x

\(\Rightarrow\) đa thức A(x) không có nghiệm

                                       điều phải chứng minh

10 tháng 5 2018

Vì \(3x^4\ge0\forall x;x^2\ge0\forall x\)

\(\Rightarrow3x^4+x^2\ge0\)

\(\Rightarrow A\left(x\right)=3x^4+x^2+2018\ge2018>0\)

Vậy...

23 tháng 4 2017

Ta có :

\(3x^2\ge0\)

\(x^4\ge0\)

=> \(3x^2+x^4\ge0\)

Mặt khác 3 > 0

=> \(3x^2+3+x^4\ge3>0\)

Nên đa thức P(x) vô nghiệm 

23 tháng 4 2017

đa thức trên vô no vì:

3x^2 > hoặc = 0

3 > 0

x^4 > hoặc =0

=> 3x^2+3+x^4 > hoặc = 3

=> đa thức trên vô no

9 tháng 7 2019

a) Tìm nghiệm của đa thức :

\(P\left(x\right)=3x+21\)

\(3x+21=0\)

\(3x=-21\)

\(x=-7\)

Do đó ta có: \(P\left(-7\right)=0\)

Vậy x=-7 là nghiệm của đa thức P(x)=3x+21

b) \(Q\left(x\right)=2x^4+x+2019\)

Với mọi x>0 ta có:

\(Q\left(x\right)=2x^4+x+2019>2.0+0+2019=2019\) với mọi x>0

=> Đa thức trên không có nghiệm dương