Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = x4(a - 4) - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
mình nhanh nhất nè , tích đi
ta có: \(Q_{\left(x\right)}=3x-0,5x^6-4x^5-x^3+ax^6+bx^5+6x^4+c-5\)
\(Q_{\left(x\right)}=3x+\left(ax^6-0,5x^6\right)+\left(bx^5-4x^5\right)+6x^4-x^3+c-5\)
\(Q_{\left(x\right)}=3x+\left(a-0,5\right)x^6+\left(b-4\right)x^5+6x^4-x^3+c-5\)
mà Q (x) có bậc 5, hệ số cao nhất là 3
=> ( b-4 ) x ^5 có hệ là 3
=> b-4 =3
b= 7
mà hệ số tự do là -2
=> đơn thức c có hệ số tự do là -2 ( không có hạng tử nào trong đa thức có hệ số tự do: -2 )
=> c= -2
mà Q (x) có bậc là 5
=> (a -0,5 ) x^ 6 = 0 ( vì nếu không bằng 0 thì đa thức Q (x) có bậc 6)
mà x là biến số
=> a- 0,5 = 0
a= 0,5
vậy a= 0,5 ; b= 7; c= -2
CHÚC BN HỌC TỐT!!
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3
= ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
Có : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
=> \(x^4+2x^2+1\ge1>0\forall x\)
=> M(x) vô nghiệm ( đpcm )
Câu 2 : A(x) = m + nx + px( x - 1 )
A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5
<=> n + 0 + 0 = 5
<=> m = 5
A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2
<=> 5 + n + 0 = -2
<=> 5 + n = -2
<=> n = -7
A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7
<=> 5 - 14 + 2p . 1 = 7
<=> -9 + 2p = 7
<=> 2p = 16
<=> p = 8
Vậy A(x) = 5 + (-7)x + 8x( x - 1 )
để đa thức P(x) có bậc 3 thì
ax4=0
=>a=0
vậy a=0 thì P(x) có bậc 3
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = (a - 4)x4 - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = x4(a - 4) - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4